Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils

Ruth Pye1, Rodrigo Hamede3, Hannah V. Siddle4, Alison Caldwell4, Graeme W. Knowles5, Kate Swift5, Alexandre Kreiss1, Menna E. Jones3, A. Bruce Lyons2 and Gregory M. Woods1,2

1Menzies Institute for Medical Research, and 2School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
3School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
4Centre for Biological Science, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
5Department of Primary Industries, Parks, Water and Environment, Hobart, Tasmania 7000, Australia

Devil facial tumour disease (DFTD) is a recently emerged fatal transmissible cancer decimating the wild population of Tasmanian devils (Sarcophilus harrisii). Biting transmits the cancer cells and the tumour develops in the new host as an allograft. The literature reports that immune escape mechanisms employed by DFTD inevitably result in host death. Here we present the first evidence that DFTD regression can occur and that wild devils can mount an immune response against the disease. Of the 52 devils tested, six had serum antibodies against DFTD cells and, in one case, prominent T lymphocyte infiltration in its tumour. Notably, four of the six devils with serum antibody had histories of DFTD regression. The novel demonstration of an immune response against DFTD in wild Tasmanian devils suggests that a proportion of wild devils can produce a protective immune response against naturally acquired DFTD. This has implications for tumour–host coevolution and vaccine development.

1. Introduction

The Tasmanian devil is the world’s largest carnivorous marsupial and unique to Tasmania, the island state of Australia. The species is listed as Endangered owing to mortality from devil facial tumour disease (DFTD) [1]. The disease is a transmissible cancer, first observed in 1996 in the far northeast of the state. It is now found throughout the majority of the devil’s geographical range [2]. DFTD is transmitted when susceptible and infected individuals bite each other and is considered invariably fatal, with most animals dying within 6–12 months of the tumour first appearing [3].

In 2015, a second transmissible facial cancer was reported in Tasmanian devils in the southeast of the state [4]. This second cancer was named DFT2, and in the report the original cancer was termed DFT1, with DFTD denoting both. This paper follows the nomenclature and refers to DFT1. The disease is transmitted as an allograft [5] and three explanations were initially suggested to explain the lack of immune rejection: the limited genetic diversity of the species; the unknown competency of the devil’s immune system; and the immune evasion mechanisms of the tumour [2]. All research to date addressing these possibilities suggests that it is the successful immune evasion strategies
by analysing serum and tumour samples from a population of disease is invariably fatal. We re-examined these assumptions always escapes the devil’s immune system, and that the tumour. The long-standing assumptions are that DFT1 transmission and is believed to be responsible for the gamma (IFN-γ) [7].

Some cancers fail to express surface MHC-I, a mechanism of immune escape is downregulation of the major histocompatibility complex class I molecule (MHC-I) [7]. MHC-I cell surface expression occurs on all nucleated cells and allows the immune system to recognize foreign or infected cells. Some cancers fail to express surface MHC-I, a mechanism that contributes to evasion of the host’s T cell response. The only other naturally occurring transmissible cancer to affect a mammalian species is canine transmissible venereal tumour (CTVT) in domestic dogs. CTVT also adopts MHC-I downregulation in its progressive phase [8]. However, after three to four months of tumour growth, there is increased surface MHC-I expression resulting in a host allo-response. This is demonstrated by host antibody production and T lymphocyte infiltration of the tumour resulting in tumour stabilization or regression and immunological memory. MHC-I expression is associated with the presence of inflammatory cytokines [8,9]. Likewise, DFT1s downregulation of surface MHC-I can be reversed in vitro by treatment of DFT1 cells with the inflammatory cytokine interferon (MFI) of each sample recorded [10]. For 45 of the individual devils, multiple serum samples collected over an extended period were analysed. Serum samples were evaluated for the presence of IgG antibodies against DFT1 cells. This was done via indirect immunofluorescence and flow cytometry with the median fluorescence intensity (MFI) of each sample recorded [10].

Table 1. DFTD and antibody (Ab) status of six Tasmanian devils exhibiting anti-DFT1 responses. Serum Ab column: ‘/’, no serum sample collected; ‘negative’, same as MFI control; ‘medium’, 2–4× MFI control; and ‘high’, >4× MFI control. YOB, year of birth; FNA, fine needle aspirate.

<table>
<thead>
<tr>
<th>case no.</th>
<th>YOB</th>
<th>sex</th>
<th>date</th>
<th>DFTD status</th>
<th>serum Abs</th>
<th>comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD1</td>
<td>2006</td>
<td>F</td>
<td>Nov 08–May 11</td>
<td>D−</td>
<td>negative</td>
<td>tumour regressed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jul 11</td>
<td>D+</td>
<td>/</td>
<td>(not retrapped after Feb 12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nov 11</td>
<td>D−</td>
<td>medium</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feb 12</td>
<td>D−</td>
<td>medium</td>
<td></td>
</tr>
<tr>
<td>TD2</td>
<td>2006</td>
<td>F</td>
<td>Feb 09–Feb 11</td>
<td>D−</td>
<td>negative</td>
<td>tumour regressed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May 11</td>
<td>D+</td>
<td>/</td>
<td>(not retrapped after Nov 11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nov 11</td>
<td>D−</td>
<td>medium</td>
<td></td>
</tr>
<tr>
<td>TD3</td>
<td>2009</td>
<td>F</td>
<td>Feb 11</td>
<td>D−</td>
<td>negative</td>
<td>tumour regressed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feb 12</td>
<td>D+</td>
<td>/</td>
<td>disease free for 2 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May 12</td>
<td>D−</td>
<td>high</td>
<td>DFT1, T lymphocytes in biopsy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feb 14</td>
<td>D−</td>
<td>high</td>
<td>(not retrapped after May 14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May 14</td>
<td>D+</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>TD4</td>
<td>2008</td>
<td>M</td>
<td>Jul 11</td>
<td>D−</td>
<td>negative</td>
<td>tumour regressed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aug 12</td>
<td>D+</td>
<td>/</td>
<td>still disease free</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nov 13</td>
<td>D−</td>
<td>medium</td>
<td>(not retrapped after Aug 15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May 14</td>
<td>D−</td>
<td>medium</td>
<td></td>
</tr>
<tr>
<td>TD5</td>
<td>2008</td>
<td>F</td>
<td>Feb 09–Nov 10</td>
<td>D−</td>
<td>negative</td>
<td>T lymphocytes in biopsy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feb 11</td>
<td>D+</td>
<td>/</td>
<td>(not retrapped after May 11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nov 11</td>
<td>D+</td>
<td>high</td>
<td></td>
</tr>
<tr>
<td>TD6</td>
<td>2010</td>
<td>M</td>
<td>Nov 13</td>
<td>D+</td>
<td>negative</td>
<td>MHC+ve DFT1 cells in FNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Feb 14</td>
<td>D+</td>
<td>/</td>
<td>(not retrapped after Feb 14)</td>
</tr>
</tbody>
</table>

employed by the tumour cells that are primarily responsible for transmission of DFT1 [2,6,7].

Current DFT1 research suggests that a major mechanism of immune escape is downregulation of the major histocompatibility complex class I molecule (MHC-I) [7]. MHC-I cell surface expression occurs on all nucleated cells and allows the immune system to recognize foreign or infected cells. Some cancers fail to express surface MHC-I, a mechanism that contributes to evasion of the host’s T cell response. The only other naturally occurring transmissible cancer to affect a mammalian species is canine transmissible venereal tumour (CTVT) in domestic dogs. CTVT also adopts MHC-I downregulation in its progressive phase [8]. However, after three to four months of tumour growth, there is increased surface MHC-I expression resulting in a host allo-response. This is demonstrated by host antibody production and T lymphocyte infiltration of the tumour resulting in tumour stabilization or regression and immunological memory. MHC-I expression is associated with the presence of inflammatory cytokines [8,9]. Likewise, DFT1s downregulation of surface MHC-I can be reversed in vitro by treatment of DFT1 cells with the inflammatory cytokine interferon (IFN-γ) [7].

Downregulation of MHC-I provides an explanation for DFT1 transmission and is believed to be responsible for the lack of a T-cell-mediated immune response against the tumour. The long-standing assumptions are that DFT1 always escapes the devil’s immune system, and that the disease is invariably fatal. We re-examined these assumptions by analysing serum and tumour samples from a population of wild devils to detect the presence of anti-DFT1 immune responses.

2. Material and methods

Serum samples collected from 52 devils between 2008 and 2014 from a closely monitored population in northwestern Tasmania were evaluated for the presence of IgG antibodies against DFT1 cells. This was done via indirect immunofluorescence and flow cytometry with the median fluorescence intensity (MFI) of each sample recorded [10]. For 45 of the individual devils, multiple serum samples collected over an extended period were analysed. Serum samples were tested against DFT1 cells not expressing MHC-I, referred to as MHC-I-ve DFT1 cells, and separately against DFT1 cells treated with IFN-γ to induce cell surface expression of MHC-I [7], referred to here as MHC-I+ve DFT1 cells. Sera from a translocated population of captive born devils living in wild conditions on a DFTD-free island were used as the negative control.

Of the 52 devils, 34 either had DFT1 at the start or developed DFT1 during the course of sampling. Where tumour biopsies were available, histopathological examination included identification of tumour-infiltrating immune cells. Immunohistochemistry using anti-MHC-II antibody to identify antigen-presenting cells and anti-CD3 antibody to identify T lymphocytes in the biopsy was performed where indicated [11]. Where immunocytochemistry (ICC) was performed on tumour fine needle aspirates (FNAs), the samples were stained for periaxin, a positive marker for DFT1 cells [12], and for β2 microglobulin (β2-m), a component of the MHC-I molecule.
Detailed methods regarding serum and tumour sample collection, and analyses are provided in the electronic supplementary material.

3. Results

Of the 52 devils, 46 had no detectable serum IgG antibody against either MHC-I$^{\text{ve}}$ or MHC-I$^{\text{im}}$ DFT1 cells. The remaining six devils (referred to here as TD1–6) had serum IgG antibody against MHC-I$^{\text{im}}$ DFT1 cells, but not MHC-I$^{\text{ve}}$ cells. None of these six devils had clinical signs of DFT1 at initial sample collection, but developed DFT1 at some stage during sample collection (table 1).

Multiple serum samples from each of the six devils were analysed and for each devil the earliest sample had the same MFI as the negative control. After these devils showed clinical signs of DFT1, they developed anti-DFT1 antibodies (figure 1). Remarkably, DFT1 regression occurred in four of the six devils that had no serum antibody; a representative result from three of the 46 devils that had no serum antibody; (g) negative results of TD3 for serum IgG against MHC-I$^{\text{im}}$ DFT1 cells, representative of TD1–6.

4. Discussion

The immune escape mechanisms of DFT1 play a significant role in its successful transmission and tumour development. While anti-DFT1 immune responses have been induced in captive devils by immunizing with killed DFT1 cell preparations [10], no convincing evidence for immune responses against DFT1 have previously been identified in wild devils. Here we report the first evidence, we believe, of anti-DFT1 immune responses occurring in wild Tasmanian devils exposed to DFT1.

The serum antibodies directed against IFN-γ treated DFT1 cells (MHC-I$^{\text{im}}$) found in six devils may have resulted from an initial immune response against the primary tumour and subsequent IFN-γ release. This may have upregulated MHC-I expression on the DFT1 cells, resulting in an immune response against these modified cells. Our results indicate that this response is initiated by infiltrating T lymphocytes, which, although rare, have been documented in at least one case of DFT1 and associated with tumour cell surface expression of MHC-I [7]. What caused the initial immune response is not clear. However, the increase in MHC-I expression on DFT1 cells potentially provided a mechanism for T-cell-mediated killing of tumour cells and ultimately tumour stabilization or regression. Antibody production, in the form of IgG, provides confirmatory evidence that an anti-DFT1 immune response had been generated. It was not possible to accurately measure IgM levels via flow cytometry to determine if IgM/IgG ratios predict protection, as suggested by Ujvari et al. [13]. The IgG
antibodies could facilitate tumour cell killing via antibody-
dependent cell-mediated cytotoxicity. Although there are sig-
nificant differences between CTVT and DFT1, they share
characteristics of transmissibility and MHC-I downregulation.
Indeed the development of IgG antibodies against DFT1 cells
may parallel what is believed to occur in CTVT cases: after
the canine tumour has established there are increased numbers
of MHC-I\(^{+}\) CTVT cells discernible by immunohistochemistry
and immunocytochemistry, and the development of serum IgG
antibodies against CTVT cells occurs [8,9]. The experimentally
induced CTVTs tend to regress [8], whereas the naturally occurring
tumours seem to remain in equilibrium as locally invasive
tumours with metastases being uncommon [14]. It is probable
that this equilibrium or regression occurs as a result of the
increased MHC-I expression of the tumour cells. The
consecutive tumour FNAs taken from TD6 showed increased
intensity of \(\beta_{2}m\) surface staining indicative of increased
MHC-I expression on the DFT1 cells. Upregulation of MHC-I,
along with seroconversion occurring at that time, indicates
that DFT1 and CTVT may share additional characteristics of
disease progression.

While there has been no observed reduction in the demo-
graphic effect of DFT1 in the local population of this study,
this evidence indicates that DFT1 does not always escape
detection by the immune system, and death may not be the
inevitable outcome of infection. The naturally occurring
immune responses against DFT1 may enable identification
of significant tumour antigens and thus advance DFT1 vac-
cine development. If there is a heritable component to the
immune response, over time selection should favour those

Figure 2. Evidence for immune cell infiltration of DFT1 or MHC-I expression of DFT1 cells. (a–i) IHC staining of DFT1 tumour biopsies. Top and middle rows taken at 20\(\times\) magnification, scale bar indicates 100 \(\mu\)m. Bottom row taken at 100\(\times\) magnification, scale bar indicates 20 \(\mu\)m. Positive cells for each marker are brown; haematoxylin (blue) is the counter stain. (a,d,g) periaxin, marker for DFT1 cells; (b,e,h) CD3, marker for T lymphocytes; (c,f) MHC-II, marker for antigen-presenting cells; (a–c) typical DFT1 biopsy with no evidence of immune response; (d–f) tumour biopsy from TD5 showing infiltration of CD3 and MHC-II positive cells throughout the tumour; (g–i) tumour biopsy from TD5 showing immune cells infiltrating DFT1 cell clusters. (j–l) ICC of DFT1 cells with periaxin (red), and \(\beta_{2}m\) (green) to identify MHC-I surface expression: (j) DFT1 cells from culture; (k) DFT1 FNA from TD6 collected in November 2013; (l) DFT1 FNA from TD6 collected in February 2014. (ICC images taken at 20\(\times\) magnification, each scale bar indicates 50 \(\mu\)m.)
individuals that are able to recognize the tumour, with increased survival and, therefore, lifetime reproductive output leading to increased representation of these devil lineages and increased survival of wild populations.

In summary, we have demonstrated a naturally occurring immune response against DFT1 in this population of wild devils. Our findings highlight the value of monitoring disease at the individual level where ongoing microevolutionary changes can be detected and permit evaluation of their impact on the disease trajectory and epidemic outcome at a population level.

Ethics. This research was carried out in compliance with and with approval from the University of Tasmania’s Animal Ethics Committee (A0013326 and A0012513).

Data accessibility. The datasets supporting this article have been uploaded as part of the electronic supplementary material. All manuscript figures belong to the authors.

References


