A banned variety was the mother of several major wine grapes

Harriet V. Hunt†1, Matthew C. Lawes2,†, Mim A. Bower1, John W. Haeger† and Christopher J. Howe2,†

1McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK
2Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK

Accepted 17 November 2009 This journal is © 2009 The Royal Society

1. INTRODUCTION

Wine is made from cultivars of the Eurasian grape (Vitis vinifera ssp. sativa), which is believed to have been domesticated from wild populations of the vine V. vinifera ssp. sylvestris on at least two separate occasions (Arroyo-Garcia et al. 2006). Although vines of existing grape varieties are propagated vegetatively, new varieties have typically resulted from spontaneous crosses between cultivars. The parents of such crosses were probably unknown and certainly unrecorded at the time of the crossing. Using a set of nuclear microsatellite; SNP

Keywords: Vitis vinifera; Chardonnay; maternal inheritance; chloroplast DNA; microsatellite; SNP

2. MATERIAL AND METHODS

The varieties Aubin vert E-1, Bachet E-1, Franc noir E-1, Knipperlé E-1, Sacy 783 and Romorantin 466 were obtained from the Esplugette Estate of the Institut Français de la Vigne et du Vin (IFV, formerly ENTA). Aligoté 01, Auxerrois 01, Chardonnay 102, Gamay noir 06, Pinot noir 74 and Pinot noir 102 were obtained from the Foundation Plant Services vineyard at UC Davis. Gouais blanc (Plant ID 39794 and 39798) was obtained from the Foundation Plant Services greenhouse.

Leaves were crushed into Whatman FTA cards. Discs punched from the cards were washed with three aliquots of 800 μl of the elution buffer provided by the manufacturer, followed by two washes with 800 μl of 10 mM Tris-HCl pH 8.0, 0.1 mM EDTA. Triton X100 was added to the washes to 1% v/v, followed by overnight incubation at room temperature. A 400 μl sample of each of these washes was taken and 800 μl of 96 per cent ethanol and 120 μl of 4 M sodium acetate were added. Samples were then incubated at ~80°C for 20 min followed by centrifugation at 13 000 rpm in an Eppendorf microcentrifuge. The supernatant was discarded and the pellets were washed with 500 μl of 70 per cent ethanol and then dissolved in 100 μl water. Whichever DNA preparation gave best yields in PCR from the five washes of a given card was used for subsequent analysis.

Primers incorporating M13 tails were synthesized for analysis of the chloroplast microsatellite loci cpSSR3, cpSSR5 and cpSSR10 (Arroyo-Garcia et al. 2002) as follows:

cpSSR3F CACGACGTGGTTAAACAGCAGCTCAAGCCATCG TTTTAGTGGC;
cpSSR3R ACTTTGGGTTCACATCGGCCTC;
cpSSRF CACGACGGTTAAGACCAGCTCCTCTTCCAAA TTGATGTTCA;
cpSSR3R TTAATGGGGTTGGATGTTGATC;
cpSSR10F CAACAGCAGTTGTTAAGACCAGCTCCTCCGCCGG TAGTAAATG;
cpSSR10R CTTGCCAAACTAAACAT.

Primers for a SNP, identified within the region covered by the primers for the microsatellite locus cpSSR4, and designated cp4527, were synthesized as follows:

Forward AGCAACCCCGAATAGAGAAA.
Reverse AGAATGTGAGAGAGACGCGGC.

The polymorphic locus corresponded to position 4527 in the GenBank accession DQ424856.1. PCR was carried out using Taq polymerase from Bioline according to the manufacturer's instructions with 1 μl of DNA template solution prepared as described above. A FAM label was incorporated onto cpSSR PCR products for genotyping as described by Boutin-Ganache et al. (2001). For the cpSSR loci the cycling parameters were 3 min at 94°C, 33 cycles of (30 s at 94°C, 45 s at 55°C, 1 min at 72°C), 10 cycles of (30 s at 94°C, 45 s at 53°C, 1 min at 72°C), 10 cycles of (30 s at 94°C, 45 s at 53°C, 1 min at 72°C). Tm was set at 1°C below the predicted annealing temperature for the primers used. For cp4527 the cycling parameters were 2 min at 94°C, 30 s at 94°C, 1 min at 55°C, 1 min at 72°C.

because in many plants, including Vitis, the female parent is the source of chloroplast DNA (Corriveau & Coleman 1988). In other economically significant plants important characteristics can be determined by the chloroplast genome, including tolerance to chilling (Chung et al. 2007) or to the fungal toxin toxotin (Avni et al. 1992). The plant mitochondrial genome is usually inherited from the same parent as the chloroplast genome, and can also determine important traits, such as cytoplasmic male sterility (Schnable & Wise 1998). It has been reported that anthocyanin content may be influenced by the maternal parent in Vitis (Liang et al. 2009), although it is not clear if this depends on the organelle genomes.

We set out to determine which way round the Pinot x Gouais crosses occurred for 12 progeny varieties, Aligoté, Aubin vert, Auxerrois, Bachet, Chardonnay, Franc noir, Gamay noir, Knipperlé, Melon, Romorantin, Roublot and Sacy, using chloroplast DNA markers from these and the parental varieties Pinot noir and Gouais blanc.
Table 1. Sequence of the newly identified single nucleotide polymorphism locus cp4527 (bold) and microsatellite allele types at four cpSSR loci for the parental and twelve progeny varieties under study. Identical results for cp4527 and cpSSR10 were obtained for two separate vines of Gouais blanc and two of Pinot noir. Data for cpSSR9, 14 and 23 are from Arroyo-Garcia et al. (2006). S, short allele; L, long allele.

<table>
<thead>
<tr>
<th>variety</th>
<th>cp4527 SNP</th>
<th>SSR9</th>
<th>SSR10</th>
<th>SSR14</th>
<th>SSR23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gouais blanc</td>
<td>TAAAAATTGATAGACCAA</td>
<td>S</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Pinot noir</td>
<td>TAAAAATTGATAGACCAA</td>
<td>L</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Aligoté</td>
<td>TAAAAATTGATAGACCAA</td>
<td>S</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Auxerrois</td>
<td>TAAAAATTGATAGACCAA</td>
<td>S</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Bacher</td>
<td>TAAAAATTGATAGACCAA</td>
<td>S</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Chardonnay</td>
<td>TAAAAATTGATAGACCAA</td>
<td>S</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Franc noir</td>
<td>TAAAAATTGATAGACCAA</td>
<td>S</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Gamay noir</td>
<td>TAAAAATTGATAGACCAA</td>
<td>S</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Melon</td>
<td>TAAAAATTGATAGACCAA</td>
<td>S</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Romorantin</td>
<td>TAAAAATTGATAGACCAA</td>
<td>S</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Sacy</td>
<td>TAAAAATTGATAGACCAA</td>
<td>S</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Aubin vert</td>
<td>TAAAAATTGATAGACCAA</td>
<td>L</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Knipperlé</td>
<td>TAAAAATTGATAGACCAA</td>
<td>L</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Roublot</td>
<td>TAAAAATTGATAGACCAA</td>
<td>L</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Given that chloroplast DNA is maternally inherited in *Vitis* (Corriveau & Coleman 1988), we can say that Gouais blanc was the maternal parent for Aligoté, Auxerrois, Bacher, Chardonnay, Franc noir, Gamay noir, Melon, Romorantin and Sacy. Pinot noir was the maternal parent for Aubin vert, Knipperlé and Roublot. It is particularly ironic that the despised grape Gouais blanc was not just a parent for several of the world’s best known and most important varieties, such as Chardonnay and Aligoté, it was the maternal parent, providing additional DNA and potentially determining important characteristics of the offspring.

We thank Adrian Barbrook and Ellen Nisbet for advice. We thank Gerald S. Dangl and Judy Yang (Foundation Plant Services, UC Davis), Laurent Audeguin (IFV, Le Grau du Roi), and Bob Varner (Spring Ridge Vineyard, Portola Valley, CA, USA) for samples, and Martin Jones for helpful comments on the manuscript.


Bowers, J., Boursiquot, J.-M., This, P., Chu, K., Johansson, H. & Meredith, C. 1999 Historical genetics: the parentage


