APPENDIX B: SOLVING THE MODEL

To find the stable levels of conflict efforts x and y, we are interested in whether a monomorphic population characterized by given values of x and y can be invaded by an initially rare mutant expressing a slightly different value x^* and/ or y^*. Since any change in x is expressed only by dominants, we can determine the effect of a small mutation with respect to x (x^*) by deriving the selection gradient $\frac{\partial W_D}{\partial x} + r(\frac{\partial W_S}{\partial x})$ at $x = x^*$. Likewise, because any change in y is expressed only by subordinates, we can determine the effect of a small mutation with respect to y (y^*) by deriving the selection gradient $\frac{\partial W_S}{\partial y} + r(\frac{\partial W_D}{\partial y})$ at $y = y^*$. Because we cannot derive the stable conflict efforts analytically (i.e., by setting the above selection gradients equal to zero and solving for x and y), we use a numerical, iterative procedure, in which we proceed as follows: First, for a given combination of model parameters (S_B, a, b, r, λ), and an arbitrary combination of x and y, we calculate the above selection gradients numerically to determine the direction and strength of selection on x and y. Second, we update these initial values of x and y by adding to each the value of the relevant selection gradient, multiplied by a small coefficient (10^{-4}, such that evolution proceeds in small steps in the direction indicated by the sign of the relevant selection gradient). We then calculate the selection gradients for the updated values of x and y, and repeat the above steps until the system converges towards a stable state (which was defined as when the largest difference in values of x and y between two consecutive time steps was $<10^{-7}$).