Early evidence for complex social structure in Proboscidea from a late Miocene trackway site in the United Arab Emirates

Faysal Bibi1,*, Brian Kraatz2, Nathan Craig3, Mark Beech4,5, Mathieu Schuster6 and Andrew Hill7

1 Institut de Paléoprimatologie et Paléontologie Humaine, Évolution et Paléoenvironnements, Université de Poitiers, CNRS UMR 6046, 40 avenue Rector Pineau, 86022 Poitiers cedex, France
2 Department of Anatomy, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766-1854, USA
3 Department of Anthropology, Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, USA
4 Historic Environment Department, Abu Dhabi Tourism & Culture Authority, PO Box 2380, Abu Dhabi, United Arab Emirates
5 Honorary Visiting Fellow, Department of Archaeology, University of York, York, UK
6 Institut de Physique du Globe de Strasbourg (IPGS-UMR 7516), Université de Strasbourg/EOST, CNRS, 1 rue Bessy, 67084 Strasbourg cedex, France
7 Department of Anthropology, Yale University, PO Box 208277, New Haven, CT 06520, USA

*Author and address for correspondence: Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstrasse 43, Berlin 10115, Germany (faysal.bibi@mfn-berlin.de).

Many living vertebrates exhibit complex social structures, evidence for the antiquity of which is limited to rare and exceptional fossil finds. Living elephants are remarkable for their hierarchical and complex social behaviour. Among living mammals, elephants are the only species that form and maintain stable social units, termed families, consisting of related females and their offspring [1–3]. Male elephants are dispersed in the family unit until adolescence, after which point they separate to lead lives that are primarily solitary, re-uniting with female-led groups only intermittently, e.g. for mating [3–5]. Despite a rich fossil record [6], the origin and evolution of social structure in Proboscidea is virtually unknown. Here, we describe an exceptional trackway site that documents the movements of both a proboscidean herd and a solitary individual, demonstrating the presence of social complexity in Proboscidea of late Miocene age.

Keywords: Proboscidea; social structure; trackways; late Miocene; Arabia

1. INTRODUCTION

Among living mammals, elephants are remarkable for their hierarchical and complex social behaviour. Living *Loxodonta* and *Elephas* species are matriochoic, forming stable matriarchal social units, termed families, consisting of related females and their offspring [1–3]. Male elephants are raised in the family unit until adolescence, after which point they separate to lead lives that are primarily solitary, re-uniting with female-led groups only intermittently, e.g. for mating [3–5]. Despite a rich fossil record [6], the origin and evolution of social structure in Proboscidea is virtually unknown. Here, we describe an exceptional trackway site that documents the movements of both a proboscidean herd and a solitary individual, demonstrating the presence of social complexity in Proboscidea of late Miocene age.

2. MATERIAL AND METHODS

Detailed methods and contextual information is provided in the electronic supplementary material. The site of Mleisa 1 is part of the Baynunah Formation, which has been biochronostratigraphically dated to between 8 and 6 Ma [12–14]. The site was imaged by kite aerial photography to produce an orthographically corrected photomosaic from which stride length measurements were taken. Body mass estimates were calculated using a regression of body mass against stride length in 189 measurements of African and Asian elephants (provided by J. Hutchinson). The full resolution orthophotomosaic is permanently archived and viewable at http://gigapan.org/gigapans/78542.

3. RESULTS

No less than 14 different trackways at Mleisa 1 are attributable to Proboscidea on the basis of the round shape and large size of the prints, coupled with very large trackway stride lengths (figure 1). All the Mleisa 1 trackways occur within a single carbonate level of microbial mat origin, indicating their relative contemporaneity. A solitary trackway (track 1 and 2 in figure 1b) extends over a distance of 260 m, making this one of the longest continuous fossil trackways in the world. The remaining proboscidean trackways are exposed over a distance of 190 m and are tightly grouped (20–30 m span), in sub-parallel alignment, and with little incidence of intersection or overlap, indicating simultaneous movement as a herd across the ancient landscape. Living elephants are known to create trails and regularly traverse these for rapid resource access [15], but the lack of overlapping and intersecting trackways indicates this was not the case at Mleisa 1. A count of non-overlapping trackways indicates a minimum number of 13 proboscidean individuals in the herd. The herd trackways show continuous small variations in directionality along their length, with more common occurrence of doubled prints that probably indicate...
minor changes in the makers’ speed [16], as might be expected for a group that was moving and interacting simultaneously. In contrast, the solitary trackway is very straight along most of its length, with a more consistent and wider stride pattern which suggests its maker may have been walking at a slower and more steady speed. In this case, our estimate of the solitary individual’s size relative to those of the herd may be underestimated.

Trackway stride lengths (figure 2a and electronic supplementary material, table S1) are relatively consistent within any given trackway. The solitary trackway records a large individual with a mean stride length of over 3 m. From within the herd, the size of the solitary trackway stride lengths is rivalled by those of at least a single individual. Among measured areas A–D, a consistent herd profile is recovered with the presence of 8–11 medium to large-sized individuals (figure 2a). Area C uniquely records the presence of a single small-sized individual (trackway 18 in figure 1b), the prints of which are faint, perhaps on account of its lighter weight. Wide variation in stride lengths among measured trackways confirms the assertion that the trackways were made by many different individuals. The resulting body mass estimates lie within the total body mass range recorded for males and females of the living elephants Elephas maximus and Loxodonta africana [2,5,17,18] (figure 2b). However, body mass estimates for the largest individuals in the Mleisa herd are greater than the range recorded for adult females of L. africana and E. maximus.

4. DISCUSSION

The majority of mammalian species (including elephants) exhibit male-based natal dispersal [19,20], and in living elephants males tend to leave the group at sexual maturity, or around 14 years in age [4]. In living elephants, males are also consistently the larger
sex. The solitary proboscidean trackway at Mleisa 1 represents an individual that was very large in size (figure 2), leading us to infer that it was made by a male that was at least of sexually mature age.

Sex determination for the larger members of the herd is less clear given the absence of any major size difference between them and the solitary individual, as might be expected for modern female and male elephants (figure 2b). Accepting that the Mleisa 1 proboscideans consisted of a solitary male and a female-led herd would require either that the Mleisa proboscideans exhibited significantly less sexual dimorphism than do elephants today, or that the solitary male was not yet fully grown.

These ideas could be further tested using the abundant Neogene record of proboscidean body fossils.

In terms of herd profile, the range of body sizes calculated for the Mleisa 1 herd is commensurate with that of a modern elephant family unit, allowing for greater average body size than observed in living elephant females. Furthermore, herd size at Mleisa 1, being a minimum of 13 individuals, is consistent with data from Amboseli [1] and Hwange [7] which places average family unit size between five and 16 individuals.

The earliest fossils attributable to *Loxodonta* and *Elephas* are recorded from late Miocene and early Pliocene Africa, respectively [6]. Neither genus is
represented in the Baynunah Formation, which instead has yielded many remains of Stegotetrabelodon syriacus and a small number of specimens of Deinotherium sp. and ‘Mastodon’ grandiscincus [21]. We therefore cannot be certain which proboscidean made the Mleisa I tracks, nor even that the solitary and herd trackways were made by the same species. But as well as being the most abundant, Stegotetrabelodon is the most likely of the three to have been found in open habitats [6]. Regardless of the identity of the track maker, the Mleisa I trackways present direct evidence that proboscidean social structure in the late Miocene comprised both herding and solitary behavioural modes, and that these modes were most likely to have been sexually determined. These behavioural aspects are characteristic of living elephants, and since the most recent common ancestor of Loxodonta and Elephas is estimated to date back to the late Miocene [22], one would expect modern elephant social behaviour to date back to this time as well. However, there has been no direct evidence to bear on this issue, until now.

This research was supported by the Historic Environment Department of the Abu Dhabi Tourism & Culture Authority, a National Science Foundation International Research Fellowship to F.B. (grant 0852975), the Revealing Hominid Origins Initiative (under N.S.F grant BCS-0321893), the Institute international de Pale´oprimatologie et Pale´ontologie humaine, the Agence Nationale de la Recherche (ANR-09-BLAN-0238), the Yale Peabody Museum, and a grant from the Yale University President’s Office. Collaboration between F.B. and N.C. was facilitated by M.-J. Daines and the Fine Outreach for Science 2010 programme. J. Hutchinson provided stride and mass data of living elephants. M. Anton, J.-R. Boisserie, P. Lee, D. Lofgren, and three anonymous reviewers provided helpful comments and suggestions. L. Park, J.-P. Colin, and I. Mazzini provided preliminary identification of the ostracods. S. Lokier provided initial sedimentological determinations. M. Fox and J. Gauthier assisted field and preparation work. A.-R. Al Nuaimi, W. A. Omer, O. Al Kaabi, A. Al Kaabi, and A. al Hajj of the Al Ain Museum aided in taking field measurements.

12 Higgs, W., Kirkham, G., Evans, G. & Hull, D. 2003 A Late Miocene Proboscidean trackway from Mleisa, United Arab Emirates. Tribulit 13, 3–8.
13 Whybrow, P. J. & Hill, A. 1999 Fossil vertebrates of Arabia, with emphasis on the Late Miocene faunas, geology, and palaeoenvironments of the Emirate of Abu Dhabi, United Arab Emirates. New Haven, CT: Yale University Press.