A soft-bodied lophophorate from the Silurian of England

M. D. Sutton1,*, D. E. G. Briggs2,3, David J. Silvete4 and Derek J. Silvete5,6

1Department of Earth Sciences and Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
2Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, CT 06520-8109, USA
3Peabody Museum of Natural History, Yale University, PO Box 208118, New Haven, CT 06520-8118, USA
4Department of Geology, University of Leicester, Leicester LE1 7RH, UK
5Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, UK
6Geological Collections, University Museum of Natural History, Oxford OX1 3PW, UK

*Author for correspondence (m.sutton@imperial.ac.uk).

1. INTRODUCTION

Lophophorate animals are lophotrochozoans characterized by a paired tentacular feeding organ (lophophore) and a sessile or near-sessile filter-feeding ecology. The most familiar are the biomineralized (lophophore) and a sessile or near-sessile filter-feeding lophophorate animals are lophotrochozoans characterized by a paired tentacular feeding organ (lophophore) and a sessile or near-sessile filter-feeding lophophorate animals are lophotrochozoans characterized by a paired tentacular feeding organ (lophophore) and a sessile or near-sessile filter-feeding lophophore, which falls outside the morphological range of any of the groups discussed above, from the Silurian (Wenlock Series, approx. 425 Ma) Herefordshire Lagerstätte of England [11]. This deposit preserves soft tissues of various invertebrates in high fidelity and three dimensions. Briggs et al. [11] provide a summary of the fauna. It includes the brachiopod Bethia serraticulma [12], the holotype of which bears an epifauna on both dorsal and ventral valves comprising three brachiopods, a tube-like structure and the specimen described here (E1 of Sutton et al. [12]; Oxford University Museum of Natural History number OUMNH C.29592).

2. MATERIAL AND METHODS

The B. serraticulma specimen (OUMNH C.29586) and associated epifauna (OUMNH C.29589-93) are preserved as calcitic void fills in an early diagenetic carbonate concretion within volcanlastic sediments. Specimens were serially ground at 20 μm intervals and digitally photographed, then digitally reconstructed and studied using the custom SPIERS software suite, implementing the methods of Sutton et al. [13,14]. A three-way split of the original concretion passes through the specimen described here, which has been reassembled digitally from three separately reconstructed pieces; the cracks that separate them are labelled in figure 1. Images (figure 1) were rendered as ray-traced virtual photographs. Datasets are housed in the Oxford University Museum of Natural History.

For descriptive purposes, the attachment point of OUMNH C.29592 is assumed to be posterior and the ‘hood’ dorsal.

3. SYSTEMATIC PALAEOONTOLOGY

Phylum: Brachiopoda?

Genus: Drakozoon gen. nov.

Derivation of name: Greek, drakó̂n (coiled) + zoon (animal), alluding to the coiled lophophore.

Diagnosis: Dorsal ‘valve’ small, unmineralized; discrete ventral valve absent. Attachment structure short, postero-terminally flared. Lophophore small, spirulophous. Lateral junction between body and dorsal valve with six transverse ridges and furrows.

Species: Drakozoon kalumma sp. nov.

Derivation of name: Greek, kalumma (hood), alluding to the dorsal hood-like structure. The name is masculine.

Diagnosis: as for the genus (monotypic).

Holotype: OUMNH C.29592 (figure 1a, e–f), attached submedially to the dorsal valve of B. serraticulma holotype, OUMNH C.29586. No other material known.

Description: The specimen is bilaterally symmetrical, and consists of a subconical body with a partially enclosing dorsal hood and paired ‘appendages’ ventrally (figure 1a, f). The body is 1.7 mm long and suboval in transverse section; it flares posteriorly to form a subplanar surface, 1.4 mm wide and 1.2 mm deep, attached to the dorsal valve of the host.
brachiopod. The body tapers gently anteriorly, terminating in a rounded tip (figure 1a,d). Near the anterior, it is produced into a ventral bulge (figure 1a,d), the posterior slope of which is steeper than the anterior. The bulge is not sharply delineated from the rest of the body except postero-laterally, where a hollow (figure 1d) occurs.

At the postero-lateral corners of the bulge, immediately ventral to the posterior of the hollow, paired appendages interpreted as lophophore arms arise, their bases 0.3 mm apart. These structures are ribbon-like, flattened antero-posteriorly at their bases and initially extend ventrally and slightly laterally. The (incomplete?) right-hand arm continues ventrally and initially extend ventrally and slightly laterally. The internal surface of the hood is otherwise smooth; apparent wrinkles on the left side of figure 1d are artefacts of visualization. Externally, at least one weak margin-parallel ‘wrinkle’ (figure 1e) is evident, together with low ‘lumps’ distributed over the surface.

4. DISCUSSION

Our interpretation of the appendages as a lophophore rests on the observations that they are: (i) paired and arise close to the axis, (ii) clearly flexible (compare left and right), (iii) coiled, and (iv) possibly filament bearing. They are smaller relative to body size than typical extant (and larger) examples, but this may simply reflect allometric lophophore growth.

*Drakozoön kalumon* does not closely resemble the entoprocts, bryozoans or adult phoronids among lophophorates, nor the ‘lophophore’-bearing pterobranch hemichordates. It is superficially similar to phoronid larvae (‘actinotrochs’, e.g. [1]), which have a ‘preoral lobe’ recalling the *Drakozoön* hood,
and reach comparable sizes [15]. However, actinotrochs are not sessile and possess a very different form of lophophore. There are much more compelling similarities between D. kalumon and the Brachiopoda. The hood is potentially homologous with a dorsal valve (or dorsal mantle) in its disposition around the body, presumably with a similar function in providing protection and at least partially enclosing a filtration cavity. The solitary sessile ecology is also brachiopod-like, and the attachment pedicle-like. Brachiopod pedicles/cementation structures are not all homologous [16]; detailed comparison with all variants is beyond the scope of this paper, although we note the similarity to the attachment style inferred for collelax-bearing taxa (see below).

Unlike a typical brachiopod, D. kalumon lacks a true ventral valve and fully enclosed mantle cavity, although the hood may have ‘pulled down’ against the surface of the host. Marginal setae are also absent; this is unlikely to be a preservational loss (OOM C.29589, an ?trypide brachiopod attached to the same host, preserves setae). While the nature of the preservation prevents a determination of the original composition, the evidence of flexibility of the hood and its continuity with the body suggests that it was not biomineralized. There is no evidence for a brachiopod-like musculature.

The ridge and furrow structures probably do not represent mantle canals (the ridges) arising from the body; brachiopod mantle canals arise from one or two pairs of primary canals connecting to the body, while here at least five subparallel ridges are present, and do not branch or taper. The regularity and transverse orientation of these structures suggest serial organization. Extant lophophorates are not externally serialized as adults, but studies of cranid larvae [17] and brachiopod lateral mesenteries [18] suggest serialized ancestry. Evolutionary-development studies (e.g. [19]) suggest that serialization is homologous within Bilateria, and therefore plesiomorphic for lophotrochozoans (which include the metameric annelids). Precise phylogenetic placement of D. kalumon is hampered by a lack of consensus in lophotrochoan molecular phylogenies, lophophorates resolving as paraphyletic [20] or less plausibly polyphyletic [21]. Nonetheless, external serialization and the partially brachiopod-like character suite (e.g. partially closed filter chamber) are suggestive of a position within the stem group of a brachiopod/phoronid clade. This clade probably nests within the sclerite-bearing tomotomids (e.g. [22]), which also lacked a closed filter chamber; additionally, the pad-like attachments inferred for collelax-bearing stem-group brachiopods [23] are similar in size and position to that of D. kalumon. Tomotomids were biomineralizers, hence the absence of mineralization in Drakozoon is probably secondary.

This fossil broadens the directly documented morphological and ecological range of the Palaeozoic lophophorates. Small soft-bodied forms such as Drakozoon undoubtedly had a very low preservation potential. Their absence elsewhere in the record probably reflects taphonomic bias; they may have been widespread.


Biol. Lett.