Parasitic infection reduces dispersal of ciliate host

Simon Fellous*†, Elsa Quillery‡, Alison B. Duncan and Olivier Kaltz

Institut des Sciences de l’Évolution UMR 5554, Université Montpellier, 2, Place Eugène Bataillon, 34095 Montpellier, France

*Author for correspondence (simon.fellous@free.fr).
†These authors contributed equally to the study.
‡Institut des Sciences de l’Évolution UMR 5554, Université Montpellier, 2, Place Eugène Bataillon, 34095 Montpellier, France.

Parasitic infection can modify host mobility and consequently their dispersal capacity. We experimentally investigated this idea using the ciliate *Paramecium caudatum* and its bacterial parasite *Holospora undulata*. We compared the short-distance dispersal of infected and uninfected populations in interconnected microcosms. Infection reduced the proportion of hosts dispersing, with levels differing among host clones. Host populations with higher densities showed lower dispersal, possibly owing to social aggregation behaviour. Parasite isolates that depleted host populations most had the lowest impact on host dispersal. Parasite-induced modification of dispersal may have consequences for the spatial distribution of disease, host and parasite genetic population structure, and coevolution.

Keywords: dispersal; infection; microcosm

1. INTRODUCTION

Parasite infection affects life-history traits and behaviours that are important for host ecology [1]. Some of these effects involve alterations of host activity or mobility. Typically, infection may be expected to weaken the host and thereby reduce its locomotion ability, such as running speed or, flight velocity (e.g. [2,3]). Alternatively, infected hosts may become more active or have increased locomotion [4]. This suggests that parasites influence the dispersal of hosts (movement of individuals or propagules with potential consequences for gene flow across space [5]). However, since dispersal is also affected by decision-making and trajectory, variation in locomotion ability does not necessarily translate into variation in dispersal [6]. Direct evidence linking parasitic infection and dispersal in natural populations is rare [7,8], partly because dispersal is difficult to measure. Microbial model systems are convenient for investigating dispersal under controlled conditions in the laboratory [9,10], but have not been used to study the additional effect of infection.

We tested the effect of parasitic infection on host dispersal in experimental populations of the ciliate, *Paramecium caudatum*, and its bacterial parasite, *Holospora undulata*. Using different combinations of host and parasite genotypes, we compared infected and uninfected populations for their short-distance dispersal between interconnected experimental microcosms. This set-up is comparable to the patchy, ephemeral habitats that *Paramecium* occupies in the field (T. Berendok, personal communication).

2. MATERIAL AND METHODS

(a) Biological system

The protozoan *P. caudatum* inhabits stagnant freshwater bodies in the Northern Hemisphere [11]. The same mitochondrial haplotypes can be found thousands of kilometres apart, but also coexist in the same pond [12]. Our laboratory cultures are maintained at 23°C in a medium prepared from dried organic lettuce supplemented with the food bacterium *Serratia marcescens*. Under permissive conditions, *P. caudatum* divides 1–2 times 24 h⁻¹.

The obligate parasite *H. undulata* (α-proteobacteria) develops in the host micronucleus [13]. Infectious forms are released upon host division or after host death. Horizontal transmission follows ingestion of infectious forms during food uptake, and vertical transmission host division. Infection reduces host division rate and survival [14].

(b) Experimental set-up

We used four genetically distinct host clones with different geographical origins (electronic supplementary material, table S1). Host clones were infected with five parasite isolates, which had evolved on different host clones for several months prior to this experiment. For each combination of host clone and parasite isolate, we isolated single infected individuals, in order to seed clonal replicate populations (prevalence >100%). Each replicate population was kept in different tubes for two months prior to the experiment. Here, we used 28 infected replicate populations from 10 host clone × parasite isolate combinations, and 22 uninfected control populations from each of the four host clones (electronic supplementary material, figure S1). The experiment was not designed to test for host clone × parasite isolate interactions.

We measured dispersal in a system of three 5 ml plastic tubes, connected by 5 cm-long rubber tubing, where connections could be closed with clamps (electronic supplementary material, figure S1). This apparatus was previously used to study short-distance dispersal in another ciliate [10]. A given replicate population at carrying capacity (3 nml, 200–500 paramecia) was placed in the central tube. After 48 h of acclimation, fresh medium was added to the two lateral tubes and the clamps were removed, allowing the paramecia to move freely between tubes. After 3 h, the number of paramecia remaining in the central tube (=non-dispersers) was estimated from a 250 µl sample, and all paramecia in lateral tubes (=dispersers) counted (see electronic supplementary material). Treatment order was randomized and tube identity unknown to the experimenter.

(c) Statistical analyses

We used analyses of covariance (JMP package v.6.0.3, SAS Institute 2006) to analyse the proportion of paramecia that dispersed to the two lateral tubes. A first model contained the log₂ total population density, infection status (fixed factors) and host clone (random factor). A second model, using infected replicate populations only, tested for an effect of parasite isolate (random factor), after controlling for host clone and population density. Fully factorial models were simplified by backward elimination of non-significant terms (p > 0.1). Homoscedasticity and normality of the residuals complied with standard model assumptions. We tested whether infection impact on host density and on dispersal was correlated across parasite isolates. We controlled for host clone effects by extracting mortality material, figure S1). The experiment was not designed to test for host clone × parasite isolate interactions.

For each combination of host clone and parasite isolate, we isolated single infected individuals, in order to seed clonal replicate populations (prevalence >100%). Each replicate population was kept in different tubes for two months prior to the experiment. Here, we used 28 infected replicate populations from 10 host clone × parasite isolate combinations, and 22 uninfected control populations from each of the four host clones (electronic supplementary material, figure S1). The experiment was not designed to test for host clone × parasite isolate interactions.

We measured dispersal in a system of three 5 ml plastic tubes, connected by 5 cm-long rubber tubing, where connections could be closed with clamps (electronic supplementary material, figure S1). This apparatus was previously used to study short-distance dispersal in another ciliate [10]. A given replicate population at carrying capacity (3 nml, 200–500 paramecia) was placed in the central tube. After 48 h of acclimation, fresh medium was added to the two lateral tubes and the clamps were removed, allowing the paramecia to move freely between tubes. After 3 h, the number of paramecia remaining in the central tube (=non-dispersers) was estimated from a 250 µl sample, and all paramecia in lateral tubes (=dispersers) counted (see electronic supplementary material). Treatment order was randomized and tube identity unknown to the experimenter.

We tested the effect of parasitic infection on host dispersal in experimental populations of the ciliate, *Paramecium caudatum*, and its bacterial parasite, *Holospora undulata*. Using different combinations of host and parasite genotypes, we compared infected and uninfected populations for their short-distance dispersal between interconnected experimental microcosms.

Electronic supplementary material is available at http://dx.doi.org/10.1098/rsbl.2010.0862 or via http://rsbl.royalsocietypublishing.org.

Received 17 September 2010
Accepted 27 September 2010

This journal is © 2010 The Royal Society
infection status and paramecium clone, as indicated by significant interactions of these two factors with population density ($F_{1,38} = 3.93$, $p = 0.054$ and $\chi^2 = 5.11$, $p = 0.023$, respectively; figure 1 and electronic supplementary material, figure S1). There was also a significant main effect of host clone ($\chi^2 = 9.53$, $p = 0.002$), with a mean proportion of dispersing paramecia ranging from 29 to 62%.

We obtained a marginally non-significant effect of parasite isolate on the proportion of dispersing hosts ($\chi^2 = 2.78$, d.f. = 1, $p = 0.095$). Parasite isolates that reduced density the most also had the least effect on dispersal (Spearman rank correlation: $\rho = -0.9$, $p = 0.037$; figure 2).

4. DISCUSSION

(a) Infection reduced dispersal

We found that infection reduced dispersal. This is the first demonstration of such an effect in experimental populations; a similar negative relationship between ectoparasite infestation and dispersal was described for a natural bird population [7]. In several species, infection impairs host locomotion ability (e.g. [2]), presumably because of exploitation of host resources. This is also conceivable here, given the deleterious effects of infection by Holospora sp. [13]. From this it would follow that more harmful infections (i.e. those that decrease population density the most) have a more negative effect on dispersal. However, the across-isolate correlation (figure 2) provided no evidence for such a relationship. Interestingly, infection by the sister species H. obtusa increased rather than decreased the swimming speed of P. caudatum [15]. Although not measured here, this observation suggests that movement or activity does not necessarily equate to dispersal. Indeed, dispersal is determined by direction and various responses to environmental cues as well as locomotion [6]. For example, infection may increase attraction between individuals thus reducing dispersal. Alteration of social behaviour by parasites can reflect parasite-induced manipulation to increase transmission [16]. Thus, reduced dispersal may be another manifestation of virulence (reduction in host fitness), maybe indirectly mediated by effects on host population density (see below).

(b) Dispersal decreased with population density

It is often assumed that higher population density increases dispersal because of increased competition for limited resources [17]. We found the opposite pattern, with generally lower dispersal at higher densities. Negative density-dependent dispersal may be owing to social factors, such as cooperation or facilitation [17]. Paramecia and other ciliates are social organisms, where swarming and dispersal behaviour depend on chemical signals from or direct physical contact with conspecifics [10,18]. Thus, population density may influence individual dispersal behaviour through signal concentration or contact frequency.

Our experimental populations varied in density according to their natural carrying capacities. Statistical analysis was corrected for this variation, and therefore the difference in dispersal between infected and uninfected populations does not simply reflect differences in density. Explicit experimental testing of effects of crowding on dispersal would require artificial manipulation of population density.

(c) Genetic variation in dispersal

How genetic and phenotypic inter-individual differences shape dispersal is currently debated [19]. In our study, the genetic component is represented by the differences in dispersal among Paramecium clones, confirming results for another ciliate [10]. Parasitic infection produced a form of phenotypic plasticity causing decreased dispersal. Host clones were similarly affected by infection, indicating the generality of this plastic effect.

We found that parasites producing more harmful infections tended to have a less negative effect on dispersal (figure 2), suggesting a negative relationship

Figure 1. Effect of infection and population density on the proportion of dispersing hosts. Regression lines illustrate density–dispersal relationship for infected and uninfected populations. Open circles, uninfected and crosses, infected.

Figure 2. Relationship between parasite effect on host density and dispersal. Mean (± s.e.) residual density or dispersal calculated per parasite isolate, after statistically controlling for host clone effects.

between parasite ability to disperse and to exploit host resources. Optimal parasite strategies may thus depend on the balance between local transmission and the capacity to reach new habitats through dispersal [20].

(d) Implications for epidemiology, population genetics and (co)evolution

Dispersal is an essential determinant of population dynamics and persistence in metapopulations [6]. For parasites, dispersal of infected individuals may be key to the spread of infection in spatially structured populations. If infection reduces dispersal, disease may remain spatially clustered. As dispersal determines gene flow, restricted dispersal may increase spatial genetic differentiation and evolutionary divergence among parasite populations [21]. If infected host populations emit fewer migrants, parasitism may lead to asymmetry in gene flow and impact population genetic structure.

Finally, differential dispersal probably affects coevolutionary outcomes. Host–parasite coevolution critically depends on the arrival of novel host or parasite alleles in populations. Reduced dispersal of infected hosts may translate into lower gene flow rates of the parasite, and this can reduce its evolutionary potential relative to that of the coevolving host [22,23].

5. CONCLUSIONS

Our experiment identified parasitism as a potentially important factor reducing host dispersal. In a metapopulation framework, this may have consequences for epidemiology, genetic population structure and (co)evolution. Further work on the precise mechanisms underlying the observed variation in dispersal is necessary for generalization of our findings to other biological systems.

We thank Aurélie Coulon for discussion and two anonymous reviewers for comments. This work was supported by the French Agence National de Recherche (ANR-09-BLAN-0099 and ANR-09-PEXT-01102). This is contribution ISEM 2010-104 from the Institut des Sciences de l’Évolution de Montpellier.