New directions in management strategy evaluation through cross-fertilization between fisheries science and terrestrial conservation

E. J. Milner-Gulland1*, Beatriz Arroyo2, Celine Bellard3, Julia Blanchard1, Nils Bunnefeld1, Miguel Delibes-Mateos2, Charles Edwards1, Ana Nuno1, Lucille Palazy3, Slaven Reljić1, Pere Riera5 and Tomaz Skrbinek6

1Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot SL5 7PY, UK
2Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-ICCM), Ronda de Toledo, s/n Ciudad Real, 13071, Spain
3Ecologie, Systématique et Evolution, UMR CNRS 8079, Univ Paris-Sud, 91405 Orsay, France
4Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
5Department of Applied Economics, Autonomous University of Barcelona, 08193 Bellaterra, Spain
6Department of Biology, Biotechnical Faculty, University of Ljubljana, Vence pot 111, 1000 Ljubljana, Slovenia

*Author for correspondence (e.j.milner-gulland@imperial.ac.uk).

On 1 and 2 June 2010, an international meeting was held at the University of Paris Sud XI, France, organized within the framework of the EU FP7 consortium project HUNT, to bring together fisheries and conservation scientists to discuss a unified framework for the future of management strategies for harvested species.

Keywords: bushmeat; partridge; brown bear; uncertainty; operating model

1. INTRODUCTION

Management strategy evaluation (MSE) is a simulation approach, developed by fisheries scientists for testing the effectiveness of proposed management plans and their robustness in meeting objectives under a wide range of uncertainties. This meeting was a first step towards implementing this approach in a terrestrial conservation context. Natural resource management encompasses the conservation of harvested resources, the welfare of their users and the requirements of managers. It is becoming increasingly important in this context to integrate biological research with insights from other fields (particularly socio-economic), as well as to understand and explicitly incorporate the uncertainties that affect decision-making.

The meeting brought together fisheries scientists, empirical ecologists, modellers and economists, to discuss the potential of the MSE approach for terrestrial conservation and to consider the insights that both conservation and fisheries management could gain from applying the approach in this new context. We first discussed the existing framework for evaluating management strategies as established in fisheries. We then considered how to extend the approach to conservation science through three topical and contrasting case studies; partridge (Alectoris rufa) hunting in Spain, brown bear (Ursus arctos) hunting in Croatia and Slovenia, and bushmeat hunting in the Serengeti. The workshop finished by identifying future research directions for both fisheries and conservation.

2. MANAGEMENT STRATEGY EVALUATION IN FISHERIES SCIENCE

Traditional management of harvested populations is based on an assessment of how the resource population would respond to a particular future extraction rate. However, basing management strategies on best estimates of resource dynamics does not necessarily lead to ecological and economic sustainability. Knowledge is always imperfect and future projections can contain a high level of uncertainty. Thus, there may still be a significant probability of population collapse when using ‘best guess’ models. To understand how a management strategy is likely to perform in the face of a range of uncertainties, its performance must be evaluated through simulation. The framework for this MSE process was developed by the scientific committee of the International Whaling Commission in the 1980s, but is seeing increasingly widespread application, forming the basis for fisheries management in South Africa and Australia (Punt & Donovon 2007).

MSE makes use of an operating model (OM), representing the ‘true’ resource dynamics and parameterized using knowledge of the biology of the population being harvested. Simulated data are ‘collected’ in an observation model and used to determine a harvest control rule (HCR) that specifies the level and type of extraction. This extraction is then applied through an implementation model, under which the OM is projected forward to the next time step (figure 1). This simulation loop is repeated, potentially over many years, allowing the user to evaluate the HCR against the management objectives, which may include stability of the yield, profitability and the probability that the stock will stay above a threshold size. Uncertainty is explicitly accounted for in several steps of the process, including parameter and structural uncertainty in the OM, observation and implementation uncertainty. This means that the eventual management procedure (MP) that is chosen by decision makers based on the results of an MSE is more likely to be robust and consistent with the precautionary principle (Butterworth 2007).

Since alternative hypotheses of underlying resource dynamics often exist and a range of management strategies need to be evaluated, sets of OMs and HCRs have been used to evaluate which management strategies consistently perform best, relative to suites of objectives (Rademeyer et al. 2007). It is necessary that these objectives and the performance metrics to evaluate them are clear before beginning the MSE process, and so MSE has also been seen as a way of heightening stakeholder involvement in management, because stakeholders (e.g. resource users) can be
We believe that an MSE approach could contribute to improved management, by explicitly demonstrating the contribution that reducing uncertainty in the system could make to robustness and profitability of management. An MSE approach could also illuminate the sustainability and profitability of estates using different combinations of wild and farm-reared stock, hunted at different intensities. Interesting parallels exist between the questions we identified in this system and the management of wild and released salmon stocks, which has been subject to considerable modelling and management effort (e.g. Michielsens et al. 2006).

(b) Brown bears in the northern Dinaric mountains

The Dinaric brown bear population is one of the last large natural populations of this species in Europe. It ranges from the Alps in the north to the Rodopi Mountains in the south, and is estimated at 2800 individuals in several subpopulations (Zedrosser et al. 2001). The northern part of the population is shared between Slovenia and Croatia.

Although both countries manage and harvest the same population, there is virtually no common vision or cooperation, and considerable differences in management goals; while bears are trophy-hunted for profit in Croatia, they are a protected species but culled to control population size in Slovenia. Conflicts with humans are a major concern in Slovenia but almost non-existent in Croatia. Major issues include the long-term effect of the current management on the shared bear population, and promoting cooperation between the two countries to better address their social, economic and ecological management aims for the population. As these questions concern the relationship between different elements of the harvesting system, they are ideally suited to investigation using MSE.

One of the most interesting questions that we identified was the potential for developing a genetically based MSE. The demography of the population is highly skewed by selective hunting, and as in any small population it is not the census population size, but the effective population size \(N_e \) that is the key concern for long-term viability (Frankham 2005). However, human–wildlife conflict and hunting quotas are driven by actual population size. Hence managers must both limit population size and ensure that hunting does not skew the age–sex ratio to the extent that the \(N_e \) becomes dangerously low. An MSE that incorporates observations of \(N_e \) with management based upon both \(N_e \) and actual population size, incorporating different social aims (profitability and acceptable levels of conflict) would be a novel approach with wide applicability.

(c) Bushmeat in the Serengeti

With abundant herbivore and carnivore populations, the Serengeti is an iconic ecosystem. Bushmeat is widely consumed and hunting is conducted both for food and cash. The seasonally available migratory ungulates represent the bulk of harvested wildlife but hunting occurs all year round, affecting a wide range of species. Some resident populations appear to have been severely reduced by hunting, while migratory species appear relatively stable (Sinclair et al. 2008).

Bushmeat is, in theory, a state-controlled natural resource in Tanzania. Hunters must obtain a hunting licence and quotas are set annually. However, there is...
a high rate of non-compliance, potentially owing to legal complexity and high fees, as well as lack of benefit distribution, poor governance and control, such that bushmeat is being used by the local communities as a de facto open access natural resource (Loibooki et al. 2002). Because of the illegal and sensitive nature of hunting, there is enormous uncertainty surrounding hunting rates and catch composition. This is a very different system from those usually considered for MSEs, although it is typical of many conservation problems. We considered how the MSE approach could be adapted to a system in which management of hunting levels is not the main issue, instead it is the implementation of conservation policies directly or indirectly to affect hunter decisions. The main requirement for an MSE approach to be appropriate is that there is feedback between observations of the resource stocks and management action to control harvest. We felt that the underlying philosophy and modelling framework were indeed transferable, with the HCR in this case being investment decisions in law enforcement when compared with more indirect interventions such as livelihood enhancements. The use of MSE in this system would be a major development, and one with great potential.

4. FUTURE DIRECTIONS

Fisheries research and management has been gradually evolving to broaden its focus from management of single target species towards a more holistic view of fisheries impacts on ecosystems and the socioeconomic issues of user reliance on fishing. The MSE framework is increasingly being used in this wider context to address trade-offs that are necessary when whole ecosystems and multiple stakeholders are considered (Smith et al. 2007; Levin et al. 2009). Recent MSE applications include the use of OMs that account for plausible climatic drivers, species interactions and behaviour of fishers and fleets (Kell et al. 2005; Fulton et al. 2008). However, most research efforts for MSEs are still focused on the OM, rather than on the other side of the equation-management decision-making, user behaviour and implementation of the HCR.

The MSE approach has the potential for use in linked socio-ecological systems far beyond the realm of fisheries. Novel applications in terrestrial systems are at the frontier of this research. In this meeting, we considered how to move this research agenda forward. Our discussions highlighted the current weakness of implementation models in fisheries, and the explicit need to incorporate the behaviour of users, rather than just assuming that HCRs are implemented with error. This was particularly obvious in the bushmeat case study. We also saw the potential for advances in biological research, for example through the development of a genetically based MSE for brown bears, as well as for the use of MSE approaches to highlight the effects of uncertainties and evaluate alternate options in harvesting systems reliant on supplementation of wild stocks.

This meeting generated a great deal of excitement about the potential of cross-fertilization between fisheries science and terrestrial conservation, and between natural and social scientists. Advances can be made in these disciplines through meetings such as this, which both contribute to an emerging research field within fisheries science, demonstrate how the technique can be translated for application in a terrestrial conservation context, and show how synergies between researchers and disciplines lead to novel insights and approaches.

We thank Franck Courchamp and the Department for Ecology, Systematics and Evolution at Université Paris Sud for hosting this workshop. E.J.M.G. acknowledges the support of a Royal Society Wolfson Research Merit award. This workshop was supported by the European Commission under the HUNT project of the 7th Framework Programme for Research and Technological Development. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use made of the information. The views expressed in this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission.

Punt, A. E. & Donovan, G. P. 2007 Developing management procedures that are robust to uncertainty: lessons from

