191 Dietary carotenoid availability, sexual Personality predicts spatial responses
187 Extrafloral nectar content alters Host ant independent oviposition
177 Three-dimensional resting behaviour With his memory magnetically erased,
163 Complex vocal imitation during Experience influences aggressive
160 Saving Darwin’s muse: evolutionary
156 Giant panda conservation science: Host ant independent oviposition
152 Evolution of climate niches in how far we have come
225 Do female ornaments indicate quality
229 Evolution of climate niches in eider ducks?
219 Sperm competition and sperm length
216 Live birth among Iguanian lizards
212 Saving Darwin’s muse: evolutionary
211 Offspring sex varies with maternal
201 Running-specific prostheses limit
197 Ontogeny of long bone geometry in
194 Senescing sexual ornaments recover
189 Sperm competition and sperm length
186 Spermatogenesis influence the rate of mammalian
184 Host and independent repositioning to inner-ear sensitivity along
181 Invited reply. Reply to Wheeldon
172 Life birth among iguanid lizards
170 Frequency matching of vocalizations
167 Individual consistency in flight
166 Cope’s Rule and Romer’s theory: how far we have come
162 Fisheries change spawning ground
159 Tropical warming and the dynamics of endangered primates
158 Global change biology
155 Evolutionary developmental biology
153 Giant panda conservation science: how far we have come
150 Effects of parental larval diet on
distribution of northeast Arctic cod
147 Complex vocal imitation during ontogeny in a bat
146 Organisms on the move: ecology and evolution of dispersal
142 Host and independent repositioning to inner-ear sensitivity along
141 Dietary carotenoid availability, sexual signallng and functional fertility in sticklebacks
134 Host and independent repositioning to inner-ear sensitivity along
133 Evolutionary developmental biology
132 Ontogeny of long bone geometry in
capsule monkeys (Cebus albifrons and Cebus atilis): implications for locomotor development and life history
130 Effects of parental larval diet on egg size and offspring traits in
127 Frequency matching of vocalizations to inner-ear sensitivity along an allopatric gradient in the
125 Evolutionary biology
124 Offspring sex varies with maternal investment ability: empirical demonstration based on
cross-fostering
120 Mountain lions prey selectively on
118 Invited reply. Reply to wheeldon
117 Visual cues and parent-offspring interactions in a nocturnal primate
115 Physiological
114 Personality predicts spatial responses to food manipulations in free-ranging gorillas (Gorilla
112 Evolutionary biology
108 Sperm competition and sperm length influence the rate of mammalian
106 Evolutionary biology
105 Life birth among iguanid lizards
104 Host and independent repositioning to inner-ear sensitivity along
102 Evolutionary biology
100 Effects of parental larval diet on egg size and offspring traits in
98 Host and independent repositioning to inner-ear sensitivity along
96 Host and independent repositioning to inner-ear sensitivity along
94 Offspring sex varies with maternal investment ability: empirical demonstration based on
cross-fostering
92 Frequency matching of vocalizations to inner-ear sensitivity along
90 Life birth among iguanid lizards
88 Evolutionary biology
86 Effects of parental larval diet on egg size and offspring traits in
84 Effects of parental larval diet on egg size and offspring traits in
82 Effects of parental larval diet on egg size and offspring traits in
80 Effects of parental larval diet on egg size and offspring traits in
78 Effects of parental larval diet on egg size and offspring traits in
76 Effects of parental larval diet on egg size and offspring traits in
74 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
72 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
70 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
68 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
66 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
64 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
62 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
60 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
58 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
56 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
54 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
52 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
50 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
48 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
46 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
44 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
42 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
40 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
38 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
36 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
34 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
32 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
30 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
28 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
26 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
24 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
22 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
20 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
18 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
16 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
14 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
12 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
10 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
8 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
6 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
4 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects
2 Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects