Whisker isotopic signature depicts migration patterns and multi-year intra- and inter-individual foraging strategies in fur seals

Y. Cherel1,*, L. Kernaléguen1, P. Richard2 and C. Guinet1

1Centre d’Études Biologiques de Chizé, UPR 1934 du CNRS, 79360 Villiers-en-Bocé, France
2Laboratoire Environnement et Sociétés, UMR 6250 du CNRS-Université de La Rochelle, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
*Author for correspondence (cherel@cebc.cnrs.fr).

1. INTRODUCTION

The movement and dietary history of individuals can be studied using stable isotope records in archival keratinous tissues. Here, we present a chronology of temporally fine-scale data on the trophic niche of otariid seals by measuring the isotopic signature of serially sampled whiskers. Whiskers of male Antarctic fur seals breeding at the Crozet Islands showed synchronous and regular oscillations in both their δ^{13}C and δ^{15}N values that are likely to represent their annual migrations over the long term (mean 4.8 years). At the population level, male Antarctic fur seals showed substantial variation in both δ^{13}C and δ^{15}N values, occupying nearly all the ‘isotopic space’ created by the diversity of potential oceanic habitats (from high Antarctica to the subtropics) and prey (from Antarctic krill to subtropical mesopelagic fishes). At the individual level, whisker isotopic signatures depict a large diversity of foraging strategies. Some seals remained in either subantarctic or Antarctic waters, while the migratory cycle of most animals encompassed a wide latitudinal gradient where they fed on different prey. The isotopic signature of whiskers, therefore, revealed new multi-year foraging strategies of male Antarctic fur seals and is a powerful tool for investigating the ecological niche during cryptic stages of mammals’ life.

Keywords: individual specialization; otarid; Southern Ocean; stable isotopes

2. MATERIAL AND METHODS

Field study was carried out on Possession Island (46°30’S, 51°45’E). One whisker was collected from 10 randomly chosen breeding male fur seals of unknown age during the summer season 2001–2002. Whiskers were cut as close to the face as possible. Prior to the isotopic analysis, they were hand-washed in 100 per cent ethanol and then cleaned in distilled water for 5 min in an ultrasonic bath. Whiskers were measured, dried and cut into 3 mm long consecutive sections starting from the proximal end. Sections ($n=710$) were weighed with a micro-balance, packed in tin containers, and carbon and nitrogen isotope ratios were determined by a continuous flow mass spectrometer (Thermo Fisher, Delta V Advantage) coupled to an elemental analyser (Thermo Fisher, Flash EA 1112). Results are presented in the conventional notation relative to Pee Dee belemnite marine fossil limestone and atmospheric N$_2$ for δ^{13}C and δ^{15}N, respectively. Values are mean ± s.d.

Keratinous tissues (including whiskers) are approximately 3% 13C enriched over their diet in pinnipeds (Hobson et al. 1996). Taking into account both the keratinous effect and the latitudinal gradient in blood δ^{13}C values of top predators in the Southern Ocean (Cherel & Hobson 2007; Cherel et al. 2007), the isotopic positions of the polar front (PF) and the subtropical front (STF) for fur seal whiskers were estimated at approximately -19 and $-16\%o$, respectively (figures 1 and 2). The subtropical zone (STZ) is defined as the area north of the STF, the subantarctic zone (SAZ, where the Crozet Islands are located) as the area between the STF and the PF, and the Antarctic zone (AZ) as the area south of PF.

3. RESULTS

The length of whiskers ranged from 84 to 333 mm, and the number of whisker sections analysed for each individual male Antarctic fur seal varied accordingly from 28 to 111 (see the electronic supplementary material). Whisker isotopic signatures were spread over a large range, with δ^{13}C and δ^{15}N values varying from -25.3 to $-14.6\%o$ (a 10.7\%o difference) and from 7.2 to 14.5\%o (7.3\%o), respectively. Overall,
the lowest $\delta^{15}N$ values (less than 9‰) were always associated with low $\delta^{13}C$ values (less than −21‰).

Among the nine whiskers with greater than 60 isotopic measurements (see the electronic supplementary material), seven showed consistent isotopic oscillations (Fourier analysis) along their length and eight showed synchronous cycles (cross-autocorrelation analysis) for their $\delta^{13}C$ and $\delta^{15}N$ values (figure 1). This, therefore, clearly indicates the migration patterns. Whisker oscillation length varied from individual to individual from 39 to 60 mm (average 49 ± 8 mm) and the number of oscillations recorded per whisker ranged from 3.6 to 6.7 (4.8 ± 1.1). Assuming that the oscillations were annual, growth rates averaged 0.13 ± 0.02 mm d$^{-1}$ and each 3 mm whisker section corresponded to 23.0 ± 3.9 d.

Male Antarctic fur seals showed large inter-individual variation in their isotopic niches, with means ranging from −22.4 ± 1.1 to −16.6 ± 0.5‰, and from 9.4 ± 1.3 to 12.6 ± 0.6‰ for $\delta^{13}C$ and $\delta^{15}N$ values, respectively (see the electronic supplementary material). Eight males showed large intra-individual variation in their $\delta^{13}C$ values, indicating foraging along wide isotopic gradients (e.g. males #78 and #M shown in figure 2). Two individuals adopted a different strategy with a more restricted foraging range (i.e. males #Y and #Z in figure 2). Some males had no overlap in their $\delta^{13}C$ values (figure 2b), and others (figure 2a), while overlapping in their carbon signatures (males #Y and #78 in SAZ, $n = 84$ and 23, −17.0 ± 0.5 and −16.9 ± 0.7‰, respectively; t-test, $t = 0.53$, $p = 0.594$), had different nitrogen signatures (10.7 ± 0.6 and 12.0 ± 0.5‰, respectively; t-test, $t = 9.26$, $p < 0.0001$).

4. DISCUSSION

The results of the present study report the migration patterns and long-term intra- and inter-individual variations in the isotopic niche of an otarid species, using whiskers as an archival tissue of the individuals’ foraging history. Consistent isotopic oscillations along whiskers were previously noted in Steller sea lions. Each oscillation was interpreted as reflecting a complete annual migratory cycle, because the estimated whisker growth rate for each oscillation in wild animals was similar to the range of growth rates in captive individuals (Hirons et al. 2001). Estimated whisker growth rates are identical in wild Steller sea lions and Antarctic fur seals (ranges 0.10–0.14 and 0.11–0.16 mm d$^{-1}$, respectively). Hence, isotopic cyclicity in whiskers of male Antarctic fur seals is likely to record their annual migratory pattern. As whiskers showed on average 4.8 oscillations, and the age of territorial male fur seals varies from 7 to 13 years (Wickens & York 1997), a single whisker recorded a substantial part (37–69%) of the animal’s lifespan.

In the Southern Ocean, $\delta^{13}C$ values vary with latitudes and along an inshore/offshore gradient (Cherel & Hobson 2007). While we cannot preclude an inshore/offshore influence, the large oscillations in whisker $\delta^{13}C$ values are likely to represent regular latitudinal movements of the fur seals. At the population level, the range of $\delta^{13}C$ values and our isotopic estimation of the position of oceanic fronts show that male seals foraged preferentially in SAZ (46% of the 710 whisker sections) and AZ (45%), and marginally in STZ (9%). The synchronous patterns of $\delta^{15}N$ with $\delta^{13}C$ values indicate periodic changes in the animals’ diet associated with migration, because variation in the $\delta^{15}N$ baseline level in the Southern Ocean...
cannot alone account for the large range of seal $\delta^{15}N$
signatures (Best & Schell 1996). Indeed, whisker $\delta^{15}N$
values decreased with latitudes from approximately 12.8‰ in STZ to 10.0‰ in AZ, which is in agreement
with both a higher $\delta^{15}N$ baseline level in the subtropics
(Best & Schell 1996) and fur seals feeding on different
species of mesopelagic fishes in subtropical and suban-
tarctic waters (Beauplet et al. 2004; Cherel et al. 2007).
However, the further drop of $\delta^{15}N$ values from approxi-
mately 10.0‰ associated with low $\delta^{13}C$ signatures indicates feeding on lower trophic level prey. The fur
seal nitrogen signature is close to that of krill-eating
Adélie penguins (Cherel 2008), indicating that, in
high-Antarctic waters, adult males from Crozet preyed
upon krill, which forms the staple food of the species
elsewhere (Staniland 2005).

The isotopic patterns observed show large intra-
and inter-individual trophic niche variations in male
Antarctic fur seals. Whisker $\delta^{13}C$ values indicate that
the migratory cycle of individuals encompassed either
one ($n = 3$), two ($n = 6$) or three ($n = 1$) oceanog-
graphic zones, with no seal foraging exclusively in the
subtropics. Among the six individuals foraging in the
AZ, four seals reached high-Antarctic waters where their $\delta^{15}N$ values showed that they all fed on krill.
The isotopic niches of individual males either overlapped or showed some levels of habitat and resource partitioning. Two examples illustrate the inter-
individual segregating mechanisms (figure 2). First
(figure 2a), the foraging ranges of males #78 and #Y
were overall different but overlapped in SAZ, where
their $\delta^{15}N$ signatures indicate dietary segregation.
Second (figure 2b), their whisker $\delta^{13}C$ values show that males #M and #Z never foraged in the same habi-
tats for over more than four years. How can we explain
the fact that males breeding in the same subantarctic
colony did not show any overlap in their foraging habi-
tats? Territorial males fast on land at the beginning of
the reproductive cycle (Staniland 2005). They, there-
fore, retain the isotopic signature of their foraging areas
and diets where they build up energy reserves.
Thus, the two seals reproduced at Crozet, but one
individual did not feed significantly in subantarctic
waters when travelling back and forth to its preferred
Antarctic foraging grounds.

In summary, whisker isotopic signatures reveal new
multi-year migratory patterns of male Antarctic fur
seals at both the population and the individual levels.
The subsequent step will be to use the method to depict species-, sex- and individual-related foraging strat-
gies allowing the coexistence of two sympatric fur seal
species at the Crozet Islands (Cherel et al. 2007).
Together with other keratinous tissues (Best & Schell
1996; Cerling et al. 2009), whiskeys represent an archive
of foraging ecology of wild mammals, thus providing
unique opportunities to reconstruct the habitats, diets
and environmental conditions experienced by those
animals. The method is at its most powerful when used
on challenging cryptic species and cryptic life stages.

The ethics committee of IPEV approved the field procedure.

The authors thank F. Bailleul, S. Luque and J. Sinclair for
their help in the field, D. Pinaud for the statistical analysis
and G. Guillou for the stable isotope analysis. The present
work was supported financially and logistically by the ANR-VMC IPSOS-SEAL and the Institut Polare Français
Paul Emile Victor (Programme no. 109, H. Weimerskirch).

Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. &
MacLeod, H. 2004 Determining trophic niche width: a
00861.x)

Beauplet, G., Dubroca, L., Guinet, C., Cherel, Y., Dabin,
W., Gagne, C. & Hindell, M. 2004 Foraging ecology of
subantarctic fur seals Arctocephalus tropicalis breeding
on Amsterdam Island: seasonal changes in relation to

Best, P. B. & Schell, D. M. 1996 Stable isotopes in southern
right whale (Eubalaena australis) baleen as indicators of
124, 483–494. (doi:10.1007/BF00351030)

Bolnick, D. I., Svanback, R., Fordyce, J. A., Yang, L. H.,
Davis, J. M., Hulsey, C. D. & Forister, M. L. 2003 The
ecology of individuals: incidence and implications of
1086/343878)

Cerling, T. E., Wittemyer, G., Ehleringer, J. R., Remien,
using isotope records (HAIR): a 6-year dietary history

Cherel, Y. 2008 Isotopic niches of emperor and Adélie
154, 813–821. (doi:10.1007/s00227-008-0974-3)

Cherel, Y. & Hobson, K. A. 2007 Geographical variation in
carbon stable isotope signatures of marine predators: a
tool to investigate their foraging areas in the Southern
3354/meps329281)

Stable isotopes document seasonal changes in trophic
niches and winter foraging individual specialisation in
diving predators from the Southern Ocean. J. Anim.

Hirons, A. C., Schell, D. M. & St. Aubin, D. J. 2001 Growth
rates of vibriase of harbor seals (Phoca vitulina) and

Hobson, K. A., Schell, D. M., Renouf, D. & Noseworthy, E.
1996 Stable carbon and nitrogen isotopic fractionation
between diet and tissues of captive seals: implications
for dietary reconstructions involving marine mammals.
1016/j.cjas.53-3-528)

Newsome, S. D., Tinker, M. T., Monson, D. H., Ofedal,
O. T., Rails, K., Staedler, M. M., Fogel, M. L. & Estes,
J. E. 2009 Using stable isotopes to investigate individual
diet specialization in California sea otters (Enhydra

Rubenstein, D. R. & Hobson, K. A. 2004 From birds to but-
terflies: animal movement patterns and stable isotopes.
2004.03.017)

Staniland, I. 2005 Sexual segregation in seals. In Sexual
segregation in vertebrates: ecology of the two sexes (eds K.
E. Ruckstuhl & P. Neuhaus), pp. 53–73. Cambridge,
UK: Cambridge University Press.

Wickens, P. & York, A. E. 1997 Comparative population