Geographically extensive hybridization between the forest trees American butternut and Japanese walnut

Sean M. Hoban¹, Tim S. McCleary¹, Scott E. Schlarbaum² and Jeanne Romero-Severson¹,*

¹Department of Biological Sciences, University of Notre Dame, 327 Galvin Life Science Building, Notre Dame, IN 46556, USA
²Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA
*Author for correspondence (jromero@nd.edu).

We investigate the question of naturally occurring interspecific hybrids between two forest trees: the native North American butternut (Juglans cinerea L.) and the introduced Japanese walnut (Juglans ailantifolia Carrière). Using nuclear and chloroplast DNA markers, we provide evidence for 29 F1 and 22 advanced generation hybrids in seven locations across the eastern and southern range of the native species. Two locations show extensive admixture (95% J. ailantifolia and hybrids) while other locations show limited admixture. Hybridization appears to be asymmetrical with 90.9 per cent of hybrids having J. ailantifolia as the maternal parent. This is, to our knowledge, the first genetic evidence for introgression as the maternal parent. This is, to our knowledge, the first genetic evidence for introgression could include loss of native diversity, but could also include transfer of useful traits from the introduced species.

Keywords: conservation; interspecific hybridization; introgression; Juglans cinerea

1. INTRODUCTION

Natural hybridization between sympatric forest tree species is common (Craft et al. 2002; Lexer et al. 2005), but hybridization between introduced species and rare or economically valuable native species has raised concern among conservation geneticists (Hails & Morley 2005; Mallet 2005). Successful hybridization can result in adaptive evolutionary change if circumstances favour hybrid progeny (Lewontin & Birch 1966; Rieseberg 1997). However, successful genetic invasion involving disjunct species seems unlikely, as hybrids are usually assumed to be intrinsically or extrinsically unfit (Mayr 1992; Coyne & Orr 2004). Therefore, the outcome of hybridization is debatable and of theoretical and practical interest.

Many East Asian woody plant taxa can produce fertile hybrid progeny with their North American sister taxa, including species in Platanus, Ulmus, Castanea, Pinus and Juglans (Wen 1999). Cultivated hybrids between varietal forms of Japanese walnut (Juglans ailantifolia Carrière) and the native North American tree butternut (Juglans cinerea L.) are such vigorous, fruitful trees that forest tree biologists have expressed concern over the possibility of an undelected, range-wide genetic invasion (Ostry & Woeste 2004). Additionally, some varieties of J. ailantifolia and some hybrids have shown remarkable tolerance to Sirococcus clavigignenti-juglandacearum, a pathogenic fungus causing the disease butternut canker, a major cause of decline in butternut populations (Orchard 1984). The adaptive potential of Japanese walnut genes could have an evolutionary and ecological impact on butternut (specifically for disease dynamics) if the hybrids produce successful descendants, but it is not known whether hybrids persist in natural settings.

To investigate the possibility of genetic invasion, we developed a set of nuclear microsatellite markers (Hoban et al. 2008) and a set of chloroplast markers (McCleary et al. 2009) to reliably identify the parent species and hybrids. As no definitive silicic characters distinguish hybrids from J. cinerea (Ross-Davis et al. 2008), identification using DNA markers is essential. We qualified both types of DNA markers on reference sets (J. ailantifolia n = 69 and J. cinerea n = 71) to assess accuracy of species identification, and then genotyped putative butternuts from seven populations in eastern North America (n = 187). We address the question: ‘do interspecific hybrids occur and reproduce in natural populations?’

2. MATERIAL AND METHODS

(a) Species

Juglans ailantifolia, native to the mountain forests of Japan, was introduced to North America ca 1870, was widely planted and soon naturalized in woodlots, abandoned fields and roadsides (Neilson 1930). Juglans cinerea, native to eastern North American riparian and bottomland forest ecosystems, has suffered severe decline throughout the twentieth century and is currently a species of concern for both state and federal threatened species lists (Schultz 2003).

(b) Study populations

The J. cinerea reference set consisted of 71 individuals: 11 butternut cultivars from the USDA National Germplasm Repository (Corvallis, OR, USA) and 60 individuals from a naturally regenerated, protected population in Kentucky. The J. ailantifolia reference set comprised 69 individuals from germplasm repositories, arboreta and botanic gardens (see table S1 in the electronic supplementary material). Between 2005 and 2008, we sampled 187 individuals from seven additional populations of J. cinerea where hybridization is suspected (see table S2 in the electronic supplementary material). Samples comprised approximately 500 g of twigs or leaves. DNA was extracted using a modified cetyltrimethylammonium bromide protocol (modifications in the electronic supplementary material).

(c) Genotyping

We genotyped with three different chloroplast cleaved amplified polymorphic sequence (CAPS) markers to detect species-specific chloroplast haplotypes (McCleary et al. 2009). CAPS products were visualized using electrophoresis in 1.5 per cent agarose gels. We also genotyped with eight nuclear microsatellite markers: Jcin_B114; Jcin_B121; Jcin_B147; Jcin_B159; Jcin_B249; Jcin_B262; Jcin_B264 (Hoban et al. 2008); and WGA82 (Robichaud et al. 2006). Fragment length polymorphisms were visualized on an ABI 3730 XL DNA analyser and scored using GENEMAPPER (Applied Biosystems, Inc., Foster City, CA, USA). Matching genotypes were identified using identity analysis in GENESYS (Kalinoski et al. 2007). Exact and near (mismatch = 1) matches were removed prior to genetic analysis, as duplicate genotypes bias the allele frequencies used for clustering algorithms. We removed 18 individuals from our reference sets and five from our natural populations. After removing duplicate genotypes, we calculated allele frequencies, FST and RST for each species.
We also assign each individual to the most likely nuclear genome, we classify individuals with less than 0.90 probability of membership in a STRUCTURE species cluster as admixed. We complement this analysis with the Bayesian approach implemented by STRUCTURE (Pritchard et al. 2000) to determine the number of genetic clusters (K) for which the data were most likely (see table S4 in the electronic supplementary material). We ran the analysis using the z and s options to one of six genotypic classes (see table S5 in the electronic supplementary material). No individual had more than 0.34 probability of backcross to J. ailantifolia. Of those assigned, 25 individuals were assigned to a hybrid class with more than or equal to 0.90 probability, 13 were assigned with more than or equal to 0.80 probability, and 13 were assigned with probabilities between 0.80 and 0.50 (figure 1). Of the 55 putative hybrids, 50 (90.9%) contained the J. ailantifolia chloroplast, and the remaining five contained the J. cinerea chloroplast (see table S5 in the electronic supplementary material). All seven populations showed evidence of at least one probable hybrid (figure 2) and non-admixed native J. cinerea occurred at proportions from 0.05 to 0.92.

4. DISCUSSION
Our data indicate that introgression occurs across a large portion of the native species range. Although hybridization was highest in fragmented semi-rural landscapes (sites CT and NC, USA), we also found small numbers of probable hybrids in four other locations, including three national forests. Extensive introgression could alter the gene pool and evolutionary potential of the native species, with potentially cascading ecosystem consequences. Our data suggest that caution should be taken in choosing individuals for restoration efforts.

Most (90.9%) of the probable hybrids contained the J. ailantifolia chloroplast. As the chloroplast is maternally inherited in Juglans (Zhang et al. 2003), this result indicates that most maternal parents of hybrids are J. ailantifolia. One possible explanation is the higher number of J. cinerea and thus higher amount of J. cinerea pollen in the pollen pool, so most paternal parents will be J. cinerea, similar to observations in Populus (Lexer et al. 2005). Alternatively, the explanation may be partial one-way intrinsic incompatibility, which is common in angiosperms (Tiffin et al. 2001).
Interestingly, all eight probable backcross individuals are to *J. cinerea*. This also may be due to high representation of *J. cinerea* pollen in the pollen pool. While eight is an exceedingly small sample size, we can speculate that a long-term consequence of repeated backcrossing to *J. cinerea* could be chloroplast capture, in which the *J. ailantifolia* chloroplast is retained mostly in a *J. cinerea* nuclear background. However, interaction between hybrids and butternut canker may preserve large blocks of the *J. ailantifolia* genome, if *J. ailantifolia* tolerance has a genetic basis. The extent of *J. ailantifolia* introgression over time may depend on the strength of selection against *J. cinerea* and asymmetry in survival of backcross individuals.

We note that our Bayesian probabilities are based on a small number of moderately to highly differentiated markers, so assignments are rough estimates. The four unclassifiable individuals and the 13 individuals with less than or equal to 0.80 probability in a single hybrid class reflect the limits of our ability to distinguish genotypic classes with the current marker sets. Genotyping with additional well-differentiated markers will improve the resolution of this analysis and the number of *F*1 versus advanced generation hybrids may change. Nevertheless, the presence of the *J. ailantifolia* chloroplast and many highly probable hybrids in multiple populations allows us to strongly suggest that hybrids persist and interbreed with the native species in natural settings, in contrast to expectations for disjunct species.

We acknowledge Paul Goedde for laboratory assistance; the Morton Arboretum, the Chicago Botanic Garden, Cornell Plantations and the USDA for reference collections; Scott Schlarbaum, Sunshine Brosi, Brice Leech, Sandra Anagnostakis, Bob Anderson, Bob White and Dale Bergdahl for field collections; Sarah Epstein and two anonymous reviewers for their comments. *STRUCTURE* and *INFOSCALC* analyses were performed on the Notre Dame Biocomplexity Cluster, supported in part by NSF MRI grant no. DBI-0420980. Funding was provided by the University of Notre Dame Du Lac and the University of Tennessee at Knoxville.

Figure 2. Native range of butternut and admixture in each collection site. Histograms represent the number of individuals assigned to each genetic class by *NEWHYBRIDS*. The four individuals with less than or equal to 0.50 probability in any class are not shown. Dark blue, *Jc*; dark yellow, *Ja*; dark green, *F*1; light green, *F*2; light blue, *Jc BC*1; light yellow, *Ja BC*1.
Mallet, J. 2005 Hybridization as an invasion of the genome.

Mayr, E. 1992 A local flora and the biological species concept.

Orchard, L. P. 1984 Butternut canker: host range, disease resistance, seedling-disease reactions and seed-borne transmission. PhD dissertation, University of Wisconsin, Madison, WI, USA.

Rieseberg, L. H. 1997 Hybrid origins of plant species.

Ross-Davis, A., Huang, Z., McKenna, J., Ostry, M. & Woeste, K. 2008 Morphological and molecular methods to identify butternut (_Juglans cinerea_) and butternut hybrids: relevance to butternut conservation.
Tree Physiol. **28**, 1127–1133.

Schultz, J. 2003 Conservation assessment for butternut or white walnut (_Juglans cinerea_ L.). USDA Forest Service, Milwaukee, WI.

Zhang, Q., Liu, Y. & Sodmergen 2003 Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species.