Stopover decision during migration: physiological conditions predict nocturnal restlessness in wild passerines

Leonida Fusani1,*, Massimiliano Cardinale2, Claudio Care3 and Wolfgang Goymann4

1 Department of Biologia ed Evoluzione, Università di Ferrara, Via Borsari 46, 44100 Ferrara, Italy
2 Institute for Marine Research, Swedish Board of Fisheries, 453 21 Lysekil, Sweden
3 Department of Theoretical Biology, University of Groningen, 9751 NN Haren, The Netherlands
4 Max-Planck-Institut für Ornithologie, Abteilung für Verhaltensneurobiologie, 82319 Seewiesen, Germany
*Author for correspondence (leofusani@gmail.com).

During migration, a number of bird species rely on stopover sites for resting and feeding before and after crossing ecological barriers such as deserts or seas. The duration of a stopover depends on the combined effects of environmental factors, endogenous programmes and physiological conditions. Previous studies indicated that lean birds prolong their refuelling stopover compared with fat birds; however, the quantitative relationship between physiological conditions and stopover behaviour has not been studied yet. Here, we tested in a large sample of free-living birds of three European passerines (whinchats, Saxicola rubetra, garden warblers, Sylvia borin and whitethroats, Sylvia communis) whether the amount of migratory restlessness (Zugunruhe) shown at a stopover site depends on physiological conditions. An integrated measure of condition based on body mass, amount of subcutaneous fat and thickness of pectoral muscles strongly predicted the intensity of Zugunruhe shown in recording cages in the night following capture. These results provide novel and robust quantitative evidence in support of the hypothesis that the amount of energy reserves plays a major role in determining the stopover duration in migratory birds.

Keywords: bird; migration; stopover; migratory restlessness; Zugunruhe

1. INTRODUCTION

A large number of birds migrate every year crossing areas where food and water are not available or unpredictable such as seas and deserts. After crossing these areas, birds would have substantially reduced their energy reserves and might need to stop and refuel. The duration of a stopover is influenced by a series of factors including weather conditions, endogenous programmes and the physiological condition of the individuals at arrival (reviewed by Jenni & Schaub 2003). Birds with a large amount of fat reserves usually leave the stopover site on the evening of the arrival day, whereas birds with depleted reserves might interrupt migration for a period ranging from one day to several weeks (Bairlein 1985; Biebach 1985; Biebach et al. 1986). Despite the number of theories proposed to explain stopover duration, fuel load and migration speed (Alersm & Lindström 1990; reviewed by Hedenstrom 2008), quantitative empirical evidence for stopover duration being related to body condition is scarce. Previous studies employed mathematical models to estimate stopover time from repeated captures of the same individuals. However, recent work, has suggested that such estimates of stopover duration might provide incorrect results because they do not take into account the different mobility—and thus likelihood of capture—of fat and lean birds (Salewski & Schaub 2007). When this factor was introduced into a model, there was no correlation between fat at first capture and (estimated) stopover duration (Salewski & Schaub 2007).

In nocturnal migrants, the extent of migratory disposition is shown in captivity by the intensity of nocturnal restlessness or Zugunruhe (Naumann 1795–1817). The duration and intensity of Zugunruhe in captive birds correlate with the duration and intensity of migration of birds of the same population in nature (Berthold 1973). In one of the early field studies with garden warblers (Sylvia borin), it was noted that heavier birds showed low activity during the day and intense Zugunruhe, whereas leaner birds showed the opposite pattern (Bairlein 1985). These observations suggested the hypothesis that lean individuals would stop to refuel upon reaching a suitable site, whereas individuals in good conditions would leave the following night (Biebach 1985). This hypothesis was further supported by laboratory studies in which we simulated a long migratory flight by depriving birds of food for two days, and a refuelling stopover by subsequently re-administering food. Such a food regime induces a temporary interruption of Zugunruhe in captive garden warblers and blackcaps (Sylvia atricapilla) on the night following food reintroduction (Biebach 1985; Gwinner et al. 1985, 1988; Fusani & Gwinner 2004, 2005). We found that the intensity of the response to the food deprivation–refeeding protocol was correlated with body condition as measured by the amount of fat reserves and body mass (Fusani & Gwinner 2004).

Here, we studied whether condition predicts the amount of Zugunruhe in free-living birds of three passerine species during their northward spring migration. After recording body mass and amount of fat and muscle reserves, the birds were set in custom-built cages for activity recording for one night and released the following morning. Our results show that the physiological condition of the birds predicts the intensity of Zugunruhe in all three species.

2. MATERIAL AND METHODS

The study was conducted in Ponza (Italy), a small island in the Tyrrenian Sea (40°55’ N, 12°58’ E) located along one of the main Mediterranean migratory routes. A ringing station, directed by M.C., has been active on the island since 2002. We used 75 (unsexed) garden warblers, 70 male whitethroats (Sylvia communis) and 34 male whinchats (Saxicola rubetra), caught with mist-nets during ringing operations between 15 April 2006 and 18 May 2007. Birds were caught before 11.00 and a single observer (M.C.)
scored subcutaneous fat on a 0–8 scale, the size of the pectoral muscles on a 0–3 scale and measured the body mass (Bairlein 1994). By 12.00, birds were placed in individual fabric cages so that they were visually isolated from each other. Each cage was equipped with an infrared activity sensor connected with an activity recorder. Birds were given 10 mealworms, 20 g of a mixture of dry insect food, banana and boiled egg (Fusani & Gwinner 2004), and water ad libitum. The room received natural illumination through a large door. All birds were released the following morning after 07.00.

We calculated the number of times the infrared sensor was activated for each 10 min period. From these values, we calculated the average activity during the intervals 13.00–19.30 (day activity) and 19.30–04.30 (Zugunruhe) based on civil twilight times (Greenwich mean time +1) on 1 May in Ponza. Some of the birds were used as controls in other experiments, which will be reported elsewhere, and were handreared for measurements at 24.00; therefore, for these birds, the activity after 24.00 was excluded from the analyses. Data were log transformed to correct for deviations from normality. We calculated then the correlations between Zugunruhe and physiological measures and an index of body condition extracted by applying principal component analysis (PCA) to body mass, fat score and muscle score (see §3). All statistical analyses were performed with SPSS v. 11.0 (SPSS, Inc.).

3. RESULTS

Correlations between Zugunruhe and physiological variables are reported in table 1. In all species, fat and body mass were positively correlated with the intensity of Zugunruhe. In garden warblers, the muscle score was also positively correlated with Zugunruhe. For each species, we extracted by means of PCA, a single component from the variables fat score, muscle score and body mass, which we named CONDITION. In garden warblers, CONDITION (eigenvalue = 2.109) explained 70.3 per cent of the total variance, and its loadings (correlation with each variable) were as follows: body mass, 0.860; fat, 0.856; and muscle, 0.798. In whinchats, CONDITION (eigenvalue = 2.414) explained 80.5 per cent of the variance, and its loadings were as follows: body mass, 0.923; fat, 0.903; and muscle, 0.864. In whitethroats, CONDITION (eigenvalue = 2.088) explained 69.6 per cent of the variance, and its loadings were as follows: body mass, 0.862; fat, 0.931; and muscle, 0.691. In all species, CONDITION was positively correlated with the amount of Zugunruhe (table 1; figure 1). The amount of diurnal activity (12.00–19.30) was negatively correlated with CONDITION in garden warblers \(r_p = -0.402, n = 75, p < 0.0001 \), whereas in whinchat and whitethroat, the correlation was not significant (respectively: \(r_p = -0.119, n = 42, p = 0.501 \); \(r_p = -0.184, n = 80, p = 0.128 \)).

The results suggested that the variability of Zugunruhe is higher for birds in worse conditions (figure 1). As the fat score is an ordinal variable, we calculated the CV of Zugunruhe for each fat category, separately for each species (figure 2). In all species, CV Zugunruhe was negatively correlated with the fat score (garden warblers: \(r_s = -0.886, p = 0.019 \); whitethroats: \(r_s = -0.829, p = 0.042 \); whinchats: \(r_s = -0.900, p = 0.037 \)).

4. DISCUSSION

Our results show that measures of body condition correlate positively with the intensity of Zugunruhe.
such as leptin released by the adipose tissue might act
influence the decision of staying at or leaving a
stopover (Bairlein 1985; Biebach 1985).

reserves at arrival determines the duration of the
migration. The results of the present
study, however, suggest that migratory behaviour is
finely modulated by the condition of the animals. The
interpretation of our results does not require deter-
mining or assuming whether the birds had arrived at
the island on the same day of capture or earlier: the
relationship between body condition and Zugunruhe
may translate in nature to the likelihood of departing
for each individual bird. Other factors, in particular
the weather conditions, will then influence the final
decision—to stay or to leave.

A candidate factor for regulation of migratory
behaviour is melatonin, which is increased in black-
caps that interrupt Zugunruhe in response to food
derprivation and subsequent refeeding (Fusani &
such as leptin released by the adipose tissue might act
on receptors in specific brain areas to modulate
stopover behaviour. Unfortunately, the existence of
an avian leptin has been questioned recently (Sharp
et al. 2008), and preliminary experiments in which
birds were injected with ‘avian’ recombinant leptin
showed no effects (W. Goymann & L. Fusani 2008,
unpublished data). Nevertheless, the negative corre-
lation between fat score and variability of Zugunruhe
suggests that fat deposits play an important role in
determining the duration of the stopover.

In garden warblers, day activity was negatively
correlated with body condition. This confirms previous
reports of a lower diurnal activity of fat birds
at stopover sites (Bairlein 1985; Yong & Moore
1993), which could reflect a trade-off between refuel-
ning needs and predation risk (Hedenstrom 2008).
Interestingly, such a negative correlation was found
only for garden warblers, whereas the positive corre-
lation between nocturnal activity and physiological
conditions was strong for all three species studied.

In conclusion, our study renders strong support to
the hypothesis that the migratory strategy of small
passerines is influenced by their physiological condition.
Unlike previous results derived from capture–recapture
studies, which may have been biased due to differences
in mobility between fat and lean birds (Salewski &
Schaub 2007), our results are based on direct beha-
vioural measures of nocturnal activity and hence
independent of such a potential methodological bias.

We thank Willi Jensen for logistic support, Ingrid
Schwab for assistance in the field, Manfred Gahr for his
support, the Max Planck Society for funding and two
anonymous referees for their constructive suggestions.
The ringing station in Ponza is operating within the long-term
ringing project ‘Piccole Isole’ coordinated by Dr Fernando
Spina of the Istituto Superiore per la Protezione e la Ricerca
Ambientale. All experimental procedures were authorized by
the Regione Lazio with respect to Italian laws.

Alerstam, T. & Lindström, A. 1990 Optimal bird migration: the
relative importance of time, energy and safety. In Bird
migration: physiology and echophysics (ed. E. Gwinner),

Bairlein, F. 1985 Sahara stopover in migratory
passerines in the central Sahara. Oecologia
66, 141–146. (doi:10.1007/BF00378566)

Songbird Migration Network. Wilhelmshaven, Germany:
Institut für Vogelforschung.

Berthold, P. 1973 Relationships between migratory restlessness
and migration distance in 6 Sylvia species. Ibis

Biebach, H. 1985 Body weights and fat deposition of
Palaeartic passerine migrants in the central Sahara. Oecologia
41, 695–697. (doi:10.1007/BF02077277)

Biebach, H., Friedrich, W. & Heine, G. 1986 Interaction of
body mass fat foraging and stopover period in trans-
Sahara migrating passerine birds. Oecologia
69, 370–379. (doi:10.1007/BF00377059)

Fusani, L. & Gwinner, E. 2004 Simulation of migratory
flight and stopover affects night levels of melatonin in

Fusani, L. & Gwinner, E. 2005 Melatonin and nocturnal

