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Loss of Arctic sea ice owing to climate change is the primary threat to polar

bears throughout their range. We evaluated the potential response of polar

bears to sea-ice declines by (i) calculating generation length (GL) for the

species, which determines the timeframe for conservation assessments;

(ii) developing a standardized sea-ice metric representing important habitat;

and (iii) using statistical models and computer simulation to project changes

in the global population under three approaches relating polar bear abundance

to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopu-

lation areas during 1979–2014 (median 21.26 days year21). The estimated

probabilities that reductions in the mean global population size of polar

bears will be greater than 30%, 50% and 80% over three generations (35–41

years) were 0.71 (range 0.20–0.95), 0.07 (range 0–0.35) and less than 0.01

(range 0–0.02), respectively. According to IUCN Red List reduction

thresholds, which provide a common measure of extinction risk across taxa,

these results are consistent with listing the species as vulnerable. Our findings

support the potential for large declines in polar bear numbers owing to sea-ice

loss, and highlight near-term uncertainty in statistical projections as well as the

sensitivity of projections to different plausible assumptions.
1. Introduction
Polar bears (Ursus maritimus) depend on sea ice for most aspects of their life

history [1]. Anthropogenic climate change is the primary threat to the species

because, over the long term, global temperatures will increase and Arctic sea

ice will decrease as long as atmospheric greenhouse gas concentrations con-

tinue to rise [2,3]. The global population of approximately 26 000 polar bears

[4] is divided into 19 subpopulations, which are grouped into four ecoregions

reflecting sea-ice dynamics and polar bear life history (figure 1; [5]). The sub-

populations currently exhibit variable status relative to climate change [6].

Two have already experienced sea-ice-related demographic declines [7,8].
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Figure 1. The four polar bear ecoregions and 19 subpopulations. Convergent ecoregion: East Greenland (EG) and Northern Beaufort Sea (NB). Divergent ecoregion:
Southern Beaufort Sea (SB), Chukchi Sea (CS), Laptev Sea (LP), Kara Sea (KS) and Barents Sea (BS). Archipelago ecoregion: M’Clintock Channel (MC), Viscount
Melville Sound (VM), Norwegian Bay (NW), Kane Basin (KB), Lancaster Sound (LS) and Gulf of Boothia (GB). Seasonal ecoregion: Western Hudson Bay (WH),
Foxe Basin (FB), Baffin Bay (BB), Davis Strait (DS) and Southern Hudson Bay (SH). The Arctic Basin (AB) subpopulation likely has few year-round resident
polar bears and was excluded from analyses (see electronic supplementary material).
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Others show signs of nutritional stress [9], have been

reported as stable or productive [10] or have unknown

status owing to deficient data [11].

Methods to forecast the effects of continued sea-ice loss on

polar bears have included structured elicitation of expert

opinion [12], Bayesian network models evaluating cumulative

stressors [5], demographic projections for individual sub-

populations [8] and mechanistic models linking vital rates to

environmental factors [13]. To date, there has been no global

assessment of polar bear abundance data relative to sea ice.

We explored future changes in mean global population size

(MGPS) for the species, using population projections under

three approaches. Approach 1 reflected the hypothesis that

environmental carrying capacity (K) is directly proportional

to the availability of sea ice. Approaches 2 and 3 estimated

relationships between changes in sea ice and observed changes

in polar bear abundance. We evaluated projection outcomes,

over three polar bear generations, relative to thresholds for

threatened categories under criterion A3 of the IUCN Red List

of Threatened Species (hereafter Red List; [4,14]). The scientific

basis of Red List categories is discussed by Mace et al. [15].
2. Methods
Projection timeframes can incorporate biological differences across

species by referencing to generation length (GL, the average age

of parents of the current cohort; [14]). We estimated GL as the

mean age of adult female polar bears with new cubs based on
live-capture data from 11 subpopulations. Females with 1 year-

old cubs in year t þ 1 were counted as pseudo-observations in

year t. Variation in GL was evaluated, using a bootstrap procedure

(electronic supplementary material, table S1).

Satellite data of sea-ice concentration were collected between

years 1979–2014 to develop an index of K for polar bears

(figure 2; [16]). Within each of the 19 subpopulation areas,

daily sea-ice area was calculated by summing the product of

ice concentration and grid cell area over all 25 � 25 km grid

cells with concentration more than 15%. We then determined

the midpoint between summer-minimum and winter-maximum

ice areas, and calculated the metric ice as the number of days per

year that ice area was above the midpoint (i.e. the number of ‘ice-

covered’ days). Mean values of ice were projected forward, using

linear models, which facilitated projections at the spatial scale of

polar bear subpopulations (electronic supplementary material,

table S2).

We used population projections to evaluate changes in MGPS

between the years 2015 and (2015þ 3 � GL) based on three

approaches relating ice to estimates of subpopulation abundance

(N; electronic supplementary material, table S3). Approach 1

assumed a one-to-one proportional relationship between ice and

N. Approaches 2 and 3 estimated linear relationships between ice
and proportional changes in N, and used these relationships to pre-

dict future values of N as a function of projected ice. Approach 2

estimated a global ice–N relationship based on a maximum of two

estimates of N per subpopulation, separated by at least 10 years,

which were available for seven subpopulations. Approach 3 esti-

mated a separate ice–N relationship for each polar bear ecoregion

using a dataset that was similar to approach 2 but included longer

time series of N available for four subpopulations. All approaches
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Figure 2. Trends in the standardized sea-ice metric (ice), representing important habitat for polar bears, within each subpopulation area during 1979 – 2014.
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assumed that changes in N were mediated primarily through

changes in K or density-independent habitat effects, and that

the ratio N/K was stable relative to other factors [17]. These
assumptions were established on the basis that polar bears depend

fundamentally on sea ice, that sea-ice changes represent the main

source of habitat modification for the species [5], and that other

http://rsbl.royalsocietypublishing.org/


Table 1. Simulation results for per cent change in the mean global population size of polar bears.

approach for
projectionsa

duration of three
polar bear
generations
(years)

per cent change in mean global
population size probability of decline

median
lower
95%CI

upper
95%CI �0% �30% �50% �80%

1 35 230 235 225 1.00 0.56 0.00 0.00

1 41 234 240 229 1.00 0.95 0.00 0.00

2 35 24 262 50 0.55 0.20 0.06 0.00

2 41 24 268 56 0.55 0.24 0.08 0.00

3 35 243 276 220 1.00 0.86 0.30 0.01

3 41 245 279 221 1.00 0.88 0.35 0.02
aApproach 1 assumed a one-to-one proportional relationship between sea ice and abundance. Approaches 2 and 3 estimated global and ecoregion-specific
relationships between sea ice and empirical estimates of abundance, respectively. Results from each approach are shown for the mean and 95th percentile of
estimated GL.
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potential stressors are either secondary (e.g. contaminants; [5]) or

have been managed (e.g. harvest; [6]) for most subpopulations in

recent decades. Projected subpopulation-specific changes in N
were scaled to changes in MGPS, using the most recent estimate of

N for each subpopulation. Based on 62 500 stochastic projections,

we calculated the most likely change in MGPS over three gener-

ations. In addition, the probabilities of exceeding 0%, 30%, 50%

and 80% reduction thresholds were generated following Red List

guidelines [14]. We performed computations in R [18], using the

package ‘arm’ [19] to simulate uncertainty in model coefficients.

Data and projection methods are described fully in the electronic

supplementary material.
3. Results and discussion
The mean subpopulation-specific estimate of GL was 11.5

years (approx. 5th and 95th percentiles ¼ 9.8 and 13.6, respect-

ively) based on 3374 observed reproductive events (electronic

supplementary material, table S1). Projections were performed

using GL ¼ 11.5 and 13.6 years to reflect variation in GL and

approximate natural GL. We did not apply the lower fifth per-

centile, because harvest likely shortened several empirical

estimates of GL [14]. The metric ice declined at a significance

level of 0.05 in all 19 subpopulation areas during 1979–2014

(figure 2, median 21.26 days year21 [95% CI ¼ 23.37 to

20.71]; electronic supplementary material, table S2).

We simulated per cent change in MGPS for six scenarios

representing two values of GL and three approaches relating

ice and N (table 1). Using GL ¼ 11.5 years, the most likely

values for per cent change in MGPS over three generations

were 230%, 24% and 243% for approaches 1, 2 and 3,

respectively. Across scenarios, the estimated median prob-

abilities of reductions greater than 30%, 50% and 80% in

MGPS were 0.71 (range 0.20–0.95), 0.07 (range 0–0.35) and

less than 0.01 (range 0–0.02), respectively.

Our analyses highlight the potential for large reductions in

MGPS as climate change and sea-ice loss continue [20] over the

next three polar bear generations. Approach 1 was based only

on projected changes in habitat, a common method when popu-

lation data are lacking [14]. Approach 2 estimated a global ice–

N relationship that was near 0 and not statistically significant

(estimated slope coefficient [b] , 0.001, s.e. ¼ 0.005; electronic
supplementary material, table S4). This finding reflects variabil-

ity in current subpopulation status, uncertainty in estimates of

N and the lack of empirical evidence for sea-ice mediated

changes in global abundance over recent decades [6]. Approach

3 estimated a separate ice–N relationship for each ecoregion.

Relationships were positive at a significance level of 0.01

for the seasonal (b ¼ 0.013, s.e. ¼ 0.002) and divergent ecore-

gions (b ¼ 0.032, s.e.¼ 0.009), reflecting observed correlations

between declining sea ice and declining abundance (electronic

supplementary material, table S4). Relationships were not sig-

nificant for the convergent (b ¼ 20.008, s.e. ¼ 0.009) and

archipelago ecoregions (b ¼ 20.029, s.e.¼ 0.030). Although

approach 3 reflected regional variability in sea-ice dynamics

and polar bear ecology, it was strongly influenced by several

well-studied subpopulations and did not reflect finer-scale vari-

ation. For example, within the divergent ecoregion, multiple

estimates of N were available for the declining Southern

Beaufort sea subpopulation [7], but not for the Chukchi sea

subpopulation, which inhabits a more biologically productive

region and has exhibited high recruitment despite sea-ice

loss [9].

Our projections (table 1) are broadly consistent with expert

opinion [12] and Bayesian network model forecasts [5], although

methodological differences preclude direct comparison (see

electronic supplementary material). Following the Red List

guidelines for risk tolerance ([14]; §3.2.3), the high probability

of reductions more than 30% in MGPS, and low probability

of reductions more than 50%, were consistent with a categoriz-

ation of vulnerable (i.e. facing a high risk of extinction in the

wild; [4]). Our use of statistical models required estimating

few parameters, consistent with sparse data available for

Arctic marine mammals [21], and propagated the effects of

assumptions on model outcomes in a transparent manner.

Future global population assessments could explore the use of

hierarchical models [22], integrate data from multiple sources

[23], model population processes (e.g. density-dependent inter-

actions between harvest and habitat loss; [17]), consider

cumulative effects on polar bear health [24] orconsider nonlinear

or spatial responses [25].

Data accessibility. The datasets supporting this article have been
uploaded as part of the electronic supplementary material.
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