The cockroach *Blattella germanica* obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont

Rafael Patiño-Navarrete¹, Maria-Dolors Piulachs², Xavier Belles², Andrés Moya³, Amparo Latorre¹ and Juli Peretó¹,³

¹Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, C/Catedràtic José Beltrán n° 2, Paterna 46980, Spain
²Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas and Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta nº 37-49, Barcelona 08003, Spain
³Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot 46100, Spain

Uric acid stored in the fat body of cockroaches is a nitrogen reservoir mobilized in times of scarcity. The discovery of urease in *Blattabacterium cuenoti*, the primary endosymbiont of cockroaches, suggests that the endosymbiont may participate in cockroach nitrogen economy. However, bacterial urease may only be one piece in the entire nitrogen recycling process from insect uric acid. Thus, in addition to the uricolytic pathway to urea, there must be glutamine synthase assimilating the released ammonia by the urease reaction to enable the stored nitrogen to be metabolically usable. None of the *Blattabacterium* genomes sequenced to date possess genes encoding for those enzymes. To test the host’s contribution to the process, we have sequenced and analysed *Blattella germanica* transcriptomes from the fat body. We identified transcripts corresponding to all genes necessary for the synthesis of uric acid and its catabolism to urea, as well as for the synthesis of glutamine, asparagine, proline and glycine, i.e. the amino acids required by the endosymbiont. We also explored the changes in gene expression with different dietary protein levels. It appears that the ability to use uric acid as a nitrogen reservoir emerged in cockroaches after its age-old symbiotic association with bacteria.

1. Introduction

Insect endosymbionts supply their hosts with nutrients needed for their particular lifestyles, mainly essential amino acids or vitamins. Besides, many animals also rely on microbial endosymbionts to recycle their nitrogenous waste products. For instance, in the aphid *Acyrthosiphon pisum*, the ammonia generated in the bacteriocytes (cells containing bacterial endosymbionts) is incorporated into the carbon skeletons of essential amino acids that are generated by *Buchnera aphidicola* [1]. In other insects, like the shield bug, *Panastacchia japonensis*, or the brown planthopper, *Nilaparvata lugens*, endosymbionts enable the host to use uric acid as a nitrogen source during starvation periods [2,3].

It is well known that cockroaches are able to accumulate uric acid when they are fed on a protein-rich diet, and conversely the amount of uric acid stored decreases when they are deprived of proteins [4,5]. Classic observations have suggested that the endosymbiont *Blattabacterium* lies behind these fluctuations. For example, observations show that bacteriocytes are closely associated with uricocytes in the host’s fat body, a cell type storing urates [5]. We also know that aposymbiotic individuals of *Blattella germanica* accumulate high amounts of uric acid [6]. The identification of genes encoding for all enzymes of the urea cycle and for urease in the *Blattabacterium* genome [7,8], as well as the results of flux
balance analysis (FBA) carried out on the reconstructed metabolic networks of *Blattabacterium* strains from the cockroaches *B. germanica* and *Periplaneta americana* support the key role of the endosymbiont in cockroach nitrogen metabolism [9]. The analysis of six further strains reinforced this hypothesis as the genes for urease and most of the genes of the urea cycle are part of the core of the *Blattabacterium* pangenome [10,11]. Genome-scale metabolic modelling is consistent with these ideas and also shows that *Blattabacterium* is auxotrophic for several non-essential amino acids, including glutamine [9].

Based on these studies, a model was proposed where the uric acid accumulated in the cockroach fat body was used as a nitrogen reservoir, to be mobilized in periods of scarcity [7,9]. This model requires a host uricolytic pathway (i.e. urate oxidase, allantoinase and allantoicase) and also the supply of non-essential amino acids to the endosymbiont. Despite the presence of many of these enzymes among Bacteroidetes [8], none of the *Blattabacterium* genomes sequenced so far contains the necessary genes [10,11]. However, urate oxidase activity was detected in some tissues of the cockroaches *Leucophaea maderae* [12] and *P. americana* [13]. In the context of this metabolic model, we have also proposed the action of membrane facilitators for urea and glutamine coded in the *Blattabacterium* genome, i.e. *glpF* and *gltP* genes, respectively [7].

This work investigates the presence of transcripts for enzymes involved in nitrogen metabolism in the transcriptome of three *B. germanica* tissues. Two tissue types harbour *Blattabacterium*: the fat body where the bacterium is massively

![Figure 1. Proposed model for uric acid mobilization. The expression pattern in response to dietary protein levels is expressed beside each gene as copies of mRNA from the target gene per 1000 copies of reference gene (actin Sc and EF-Tu for *Blattella* and *Blattabacterium* transcripts, respectively). The asterisk represent statistically significant differences with respect to control (*p* < 0.05, *n* = 3).](image-url)
present, and the ovary, where only a small population of bacteria is present. The third tissue type (the epidermis, including cuticle layers) is a Blattabacterium-free tissue. We have also explored how genes involved in uric acid metabolism respond to dietary nitrogen levels. Additionally, we have been able to find the transcripts for the synthesis of the non-essential amino acids required by Blattabacterium metabolism.

2. Material and methods

Blattabacterium germanica specimens were obtained from a population reared at the facilities of the Institut de Biologia Evolutiva (CSIC-UPF) in Barcelona, Spain. RNA extraction and cDNA synthesis were performed using standard procedures. Each transcriptome library was sequenced on the 454-Flx platform, assembled and annotated (see the electronic supplementary material).

The relative expression of genes involved in uric acid metabolism was measured in animals fed on different experimental diets with different protein content (0%, 5% and 50%), using animals fed on dog food (25% of protein content) as a control (see the electronic supplementary material). Results are represented as copies of target mRNA against the corresponding reference gene (actin 5c and elongation factor EF-Tu in the case of host and endosymbiont transcripts, respectively). Statistical analyses were run with REST [14] (see the electronic supplementary material for further details).

3. Results and discussion

(a) Uric acid metabolism is shared between host and endosymbiont

The nitrogen recycling process in cockroaches involves the degradation of uric acid to urea, and the later degradation of this metabolite by a Blattabacterium urease, generating ammonia and CO₂. It has been postulated that endosymbiont-released ammonia would be used by a host-encoded glutamine synthetase to produce glutamine, thus incorporating nitrogen from uric acid to metabolism [7,9]. The expression of the genes for uricolytic enzymes was detected in the library obtained from the fat body (figure 1). Conversely, only urate oxidase and allantoicase transcripts were detected in the ovary library, whereas none of these genes were expressed in the epidermis library. With the expression of genes for all uricolytic enzymes and glutamine synthetase, the pathway postulated for uric acid recycling would be possible in the fat body (figure 1). On the strength of these results, we can propose that B. germanica possesses a nitrogen recycling system similar to the one observed in P. japonensis [3] or in N. lugens [2], albeit differing greatly with these systems where the uricolytic activities are supplied by the symbionts: in B. germanica, the pathway is chimeric with participation of enzymes from the host and the symbiont.

(b) Host metabolism complements non-essential amino acid auxotrophies of Blattabacterium

Glutamine is not the only non-essential amino acid required by the endosymbiotic metabolism. The FBA of the genome-scale metabolic network of B. germanica–Blattabacterium would suggest that Blattabacterium is also auxotrophic for L-Asn, Gly and L-Pro [9]. Transcripts from all necessary genes for the synthesis of these amino acids were identified in the fat body library, but not in the ovary or the epidermis libraries (table 1). Interestingly, some of these non-essential amino acids are among the most abundant free amino acids in cockroach haemolymph, as measured in Blaberus discoidalis [15] and in P. americana [16], L-Pro and Gly being the most abundant in both species. The loss of the ability to synthesize non-essential amino acids seems to be a common feature in other insect endosymbionts such as Buchnera and Blochmannia, which are endosymbionts of aphids and Camponotus ants, respectively. In aphids, like cockroaches, these non-essential amino acids are also among the most abundant in the haemolymph [1], and their availability in host tissues renders maintenance of biosynthetic pathways for them unnecessary in the endosymbiont. Blattabacterium germanica

Table 1. Presence (+) or absence (–) of transcripts related to non-essential amino acid biosynthesis in the three tissue libraries (fat body, ovary and epidermis) of B. germanica. (All transcripts, even those represented by a single read, were considered. See the electronic supplementary material, table S3, for accession numbers and best BLAST hits. EC, enzyme commission number.)

<table>
<thead>
<tr>
<th>gene</th>
<th>EC</th>
<th>fat body</th>
<th>ovary</th>
<th>epidermis</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspartate aminotransferase (mitochondrial-like and cytoplasmic)</td>
<td>2.6.1.1</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>asparagine synthetase</td>
<td>6.3.5.4</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>glutamate dehydrogenase</td>
<td>1.4.1.3</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>glutamine synthetase</td>
<td>6.3.1.2</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>proline biosynthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>glutamate-semialdehyde dehydrogenase</td>
<td>2.7.2.11</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ornithine-δ-transaminase</td>
<td>2.6.1.3</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>pyrroline-5-carboxylate reductase (isozymes P5CR and P5CR2)</td>
<td>1.5.1.2</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>glycine biosynthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phosphoglycerate dehydrogenase</td>
<td>1.1.1.95</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>phosphoserine transaminase</td>
<td>2.6.1.52</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>phosphoserine phosphatase</td>
<td>3.1.3.3</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>serine hydroxymethyltransferase</td>
<td>2.1.2.1</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Blattabacterium germanica
might use the amino acid supply to control the metabolic be-
vaviour or growth rate of Blattabacterium, like the control that
the aphid *A. pisum* exerts on the essential amino acid metab-
olism of *Buchnera* by modulating the supply of metabolic precursors [19,20]. This sort of control over the symbiotic pop-
ulation through amino acid supply has also been observed in
plant hosts when controlling their nitrogen-fixing bacteria [21].

(c) Dietary nitrogen levels affect gene expression

Once we had confirmed that the fat body of *B. germanica*
expresses genes involved in uric acid production and degra-
dation, we measured the expression of these genes in the fat
body and ovary in response to dietary nitrogen levels. Urate ox-
dase gene expression increased significantly in both tissues of
animals fed on a low-protein diet (figure 1). The other gene show-
ing a significant variation in expression is the one for glutamine
synthetase, which is over-expressed in the fat body of animals
fed on a non-protein diet, and downregulated in the ovary of
those animals fed on a high-protein diet (figure 1). None of the
other genes showed significant increases in expression, suggest-
ing that the uricolysis pathway is expressed in a constitutive
manner and other levels of flux regulation must exist.

Cockroaches accumulate uric acid in the fat body, especially
specimens fed on protein-rich diets [5]. The amount of uric acid
accumulated in these animals decreases dramatically when
they are shifted to a low-protein diet [22]. Both observations
suggest that uric acid is actually a reservoir of nitrogen, ready
to be mobilized in periods of scarcity. Our observations on
the increased gene expression for urate oxidase and glutamine
synthetase in animals deprived of a dietary nitrogen source are
consistent with this proposal.

We can conclude, thus, that after the symbiotic association
between the ancestors of cockroaches and *Blattabacterium*,
their metabolic networks merged and transformed a nitrogen
waste product in insects, such as uric acid, into a metabolically
useful source of nitrogen.

Data accessibility. Available in the electronic supplementary material,
table S3.

Funding statement. This work was supported by the Ministerio de
Ciencia e Innovación, Spain (BFU2012-39816-C02-01, co-financed by
FEDER funds, to A.L., BFI/2011-22404 to M.D.P. and CGL2008-
03517/BOS and CGL2012-36251 to X.B.) and the Generalitat
Valenciana, Spain (Prometeo/2009/092 to A.M.). R.P. was recipient
of a fellowship from the Ministerio de Ciencia e Innovación, Spain.

References

1. MacDonald SJ, Lin GG, Russell CW, Thomas GH, Douglas AE. 2012 The central role of the host cell in
2. Hongh Y, Ishikawa H. 1997 Uric acid as a nitrogen
resource for the brown plant hopper, *Nilaparvata lugens*: studies with synthetic diets and
jiphysp.2006.05.003)
nurev.en.30.010185.000333)
5. Cochran DG, Mullins DE, Mullins KJ. 1979 Cytoplogical
changes in the fat body of the American cockroach,
*Periplaneta americana*, in relation to dietary nitrogen
6. Valovage WD, Brooks MA. 1979 Uric acid quantities
in the fat body of normal and aposymbiotic German
Am. 72, 687 – 689.
7. Lopez-Sanchez M, Neef A, Peretó J, Patiño-
Evolutionary convergence and nitrogen metabolism
in *Blattabacterium* strain Bge, primary
endosymbiont of the cockroach *Blattella germanica*.
pagen.1000721)
8. Sabree ZL, Kambhampati S, Moran NA. 2009
Nitrogen recycling and nutritional provisioning by
*Blattabacterium*, the cockroach endosymbiont. Proc.
panas.0907504106)
9. Gonzalez-Domenech CM, Belda E, Patiño-Navarrete
stasis in an ancient symbiosis: genome-scale
metabolic networks from two *Blattabacterium cuenoti*
strains, primary endosymbionts of
1471-2180-12-S1-55)
2013 Comparative genomics of *Blattabacterium cuenoti*:
11. Tokuda G et al. 2013 Maintenance of essential
amyloid synthesis pathways in the *Blattabacterium cuenoti* symbiont of a wood-feeding
2012.1153)
12. Lisa JD, Ludwig D. 1958 Uricase, guanase, and
xanthine oxidase from the fat body of the American
3, 66 – 73.
13. Cordero S, Ludwig D. 1962 Purification and activities
of the leucine aminopeptidase from the hemolymph of the American cockroach,
expression results in real-time PCR. Nucleic Acids
15. Sowa SM, Keeley LL. 1996 Free amino acids in the
hemolymph of the cockroach, *Blaberus discoidalis*.
16. Stevens TM. 1961 Free amino acids in the
17. Shigenobu S, Watanabe H, Hattori M, Sakaki Y,
Ishikawa H. 2000 Genome sequence of the
endocellular bacterial symbiont of aphids *Buchnera*
sp. APS. Nature 407, 81 – 86. (doi:10.1038/
35024074)
18. Gil R et al. 2003 The genome sequence of
*Buchmismania floridanus*: comparative analysis of
19. MacDonald SJ, Thomas GH, Douglas AE. 2011
Genetic and metabolic determinants of nutritional
phenotype in an insect–bacterial symbiosis. Mol.
Ecol. 20, 2073 – 2084. (doi:10.1111/j.1365-294X.
2011.05031.x.)
20. Price DR, Feng H, Baker JD, Bavan S, Luette CW,
Wilson AC. 2014 Aphis amino acid transporter
regulates glutamine supply to intracellular bacterial
(doi:10.1073/pnas.1306061111)
Kinghorn S, White J, Poole P. 2010 Role of
symbiotic auxotrophy in the *Rhizobium*–legume
journal.pone.003933)
in the American cockroach: an examination of whole
body and fat body regulation of cations in response
to nitrogen balance. J. Exp. Biol. 61, 557 – 570.