Discovery of a relict lineage and monotypic family of passerine birds

Per Alström,1,2 Daniel M. Hooper,3 Yang Liu,4 Urban Olsson,5 Dhananjai Mohan,6 Magnus Gelang,7 Hung Le Manh,8 Jian Zhao,9 Fumin Lei1 and Trevor D. Price3

1 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, People’s Republic of China
2 Swedish Species Information Centre, Swedish University of Agricultural Sciences, PO Box 7007, Uppsala 750 07, Sweden
3 Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
4 State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
5 Systematics and Biodiversity, Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
6 Wildlife Institute of India, PO Box 18, Chandrabani, Dehradun 248001, India
7 Department of Zoology, Swedish Museum of Natural History, Stockholm 10405, Sweden
8 Zoology Museum Department, Institute of Ecology and Biological Resources, Hanoi, Vietnam

Analysis of one of the most comprehensive datasets to date of the largest passerine bird clade, Passerida, identified 10 primary well-supported lineages corresponding to Sylvioidea, Muscicapoidea, Certhioidea, Passeroidea, the ‘bombycillids’ (here proposed to be recognized as Bombycilloidea), Paridae/Remizidae (proposed to be recognized as Paroidea), Stenostiridae, Hyliotidae, Regulidae (proposed to be recognized as Reguloidea) and spotted wren-babbler Spelaeornis formosus. The latter was found on a single branch in a strongly supported clade with Muscicapoidea, Certhioidea and Bombycilloidea, although the relationships among these were unresolved. We conclude that the spotted wren-babbler represents a relict basal lineage within Passerida with no close extant relatives, and we support the already used name Elachura formosa and propose the new family name Elachuridae for this single species.

1. Introduction

Birds have been described and charted more completely than other taxa, and, thanks to molecular analyses, their relationships are beginning to be well understood [1,2]. These studies have revealed multiple examples, at both high and low levels, where the traditional classification has been contradicted. At lower taxonomic levels, rampant convergences in morphology or unequal rates of morphological divergence, often in combination with unusual biogeographic distributions, have confounded classifications based on phenotypic characters [2,3]. Some of the more notable examples of passerine species with previously misinterpreted relationships include the bearded reedling (Panurus biarmicus) [4–6], rail-babbler (Eupetes macrorhynchus) [7], white-bellied erpornis (Erpornis zantholeuca) [8,9], cinnamon ibon (Hypocrypta ruticollis) [10], black-capped donacobius (Donacobius atricapilla) [5,6,11], yellow-bellied fantail (Chelidorhynx hypoxantha) [12], siltail (Lamprolia victoriae) [13], ground tit (Pseudopodoces humilis) [14,15] and malia (Malia grata) [16].

The past 10 years have witnessed a surge in taxonomic changes in Asian birds, partly as a result of molecular analyses [3,17]. A large fraction has been within the songbird group called ‘babblers’. Based on several comprehensive molecular studies [5,6,18–20], five primary clades have been identified: Timaliidae,
Leiotrichidae, Pellorneidae, Zosteropidae and Sylviidae. Previously, the circumscription of Timaliidae included the majority of the ‘babblers’, whereas Sylviidae was traditionally applied to various groups of ‘warblers’ (review in [3]). Within Timaliidae, five species of *Spelacornis* ‘wren-babblers’ were recognized [21,22], until Collar & Robson [23] split *Spelacornis choluticus* into four species and moved the spotted wren-babbler, *Spelacornis formosus*, to the monotypic genus *Elachura* based on morphology and vocalizations.

Based on one of the most comprehensive datasets for the large Passerida clade, both regarding number of taxa and loci, we review the systematics of this taxon and show, for example, that *S. formosus* is not a babbler, but in fact represents a relict taxon with no close extant relatives.

2. Material and methods

Sequence data were obtained from representatives of all families within Passerida except three monotypic families, including three *S. formosus* from different parts of its range (figure 1) and four other *Spelacornis* species (deposited in Dryad). Seven loci were analysed: the mitochondrial cytochrome *b* (*cytb*) and ND2, nuclear GAPDH, ODC, myoglobin (*myo*) and LDH introns and coding RAG1, although not all loci were obtained for all species (deposited in Dryad). The data were analysed by Bayesian inference in MrBayes [25] and by maximum-likelihood bootstrapping with RAxML [26]. See the electronic supplementary material for the laboratory procedures and phylogenetic analyses. Details of samples, including GenBank numbers, uploaded to Dryad.

3. Results

A ‘condensed’ multilocus tree is shown in figure 2; the same tree with all branches visible and single-locus trees appear in the electronic supplementary material, figures S1 and S2. Within Passerida, the superfamilies Sylvioida, Muscicapoidea, Certhioidea and Passeroidea were recovered with strong support. At the ‘same level’ in the tree, five well-supported smaller clades representing Remizidae + Paridae, Stenostiridae, the ‘bombycillids’ (Bombycillidae, Hylocitrinidae, Ptilogonatidae and Dullidae), Regulidae and Hyliotidae were recovered. *Spelacornis formosus* sat on a ‘bare’ branch among these basal lineages. Sylvioida, Remizidae + Paridae, Stenostiridae and Hyliotidae formed a clade, and Muscicapoidea, Certhioidea, the ‘bombycillids’ and *S. formosus* another one, both well supported. Other relationships among the primary lineages were uncertain, and the base of Passerida was characterized by extremely short internodes.

4. Discussion

This study is the first to our knowledge to provide strong support for a clade comprising Sylvioida, Remizidae + Paridae, Stenostiridae and Hyliotidae, and another one containing Muscicapoidea, Certhioidea and the ‘bombycillids’ (and *S. formosus*; cf. [27,28]). However, the relationships among these and the other basal lineages within Passerida remain uncertain, probably due to an explosive divergence of these primary lineages, as suggested by the phylogeny.

*Spelacornis formosus* is clearly not a ‘babbler’, but instead on its own forms one of the 10 primary lineages within the Passerida radiation. Although the data support a relationship with Muscicapoidea, Certhioidea and the ‘bombycillids’, the precise position of *S. formosus* within this clade is uncertain. The distinctness of *S. formosus* is most unexpected. Morphologically and ecologically, it closely resembles several ‘wren-babblers’ [23]. In many respects, it is also very similar to some *Troglodytes* wrens. However, its song bears little resemblance to other continental Asian passerines ([23]; personal observation; figure 1), and this in combination with its ‘decidedly longer bill’ compared with other *Spelacornis* led Collar & Robson [23] to place it in the monotypic genus *Elachura*. The phenotypic similarities between *S. formosus* and some *Spelacornis* and *Troglodytes* have apparently evolved in parallel. This has previously been shown to be the case for the *Pnoepyga* ‘wren-babblers’, which were recently placed in a monotypic family, *Pnoepygidae* [19].

Our results support the placement of the spotted wren-babbler in a separate genus, *Elachura*. Moreover, based on its phylogenetic distinctness, we recommend that it be placed in a monotypic family, for which we propose a new family name: Elachuridae. Type genus *Elachura* Oates, 1889. Diagnosis: The monotypic genus *Elachura* includes *Elachura formosus*, which is a small (ca 10 cm), short-tailed (ca 3 cm) oscine with grey–brown crown, nape, ear-coverts and upperparts with whitish or pale buffish terminal spots and blackish
Relationships of the primary lineages within Passerida based on mitochondrial cytb and ND2 and nuclear myoglobin, ODC, GAPDH, LDH and RAG1, analysed by Bayesian inference in 10 partitions under a relaxed clock model. Posterior probabilities (PP) and maximum-likelihood bootstrap (MLBS) values are shown at the nodes, in this order; asterisk (*) indicates PP 1.00 or MLBS 100%. Numbers in parentheses indicate the number of species in the different groups. (Online version in colour.)
subterminal markings to many of the feathers; throat and breast mottled with grey—brown and whitish and some blackish subterminal markings; rest of underparts pale rufous with blackish subterminal markings and whitish tips to many of the feathers, especially on the flanks; remiges (outer webs) and rectrices rufous with broad, widely spaced blackish bars. See figure 1 and [23, p. 176 and Plate 7]. The name Elachura has been registered in ZooBank under LSID zoobank.org: act: E95131EE-4849-46A4-915B-1789ABC08143. We suggest that the English name be changed to Elachura to highlight its uniqueness.

It could be argued that the phylogenetic distinctness of Elachura warrants recognition also at the rank of superfamily, as could be claimed for all of the well-supported primary lineages within Passerida. The case is strongest for Paridae + Remizidae, Regulidae and the ‘bombycyllids’, which have consistently proved highly distinctive in previous studies [5,6,9,15,29]. We propose that these be recognized at the level of superfamily, Paroidea, Regulioidea and Bombycilloidea, respectively.

Species on long terminal branches (‘old’ species) are disproportionately distributed among the non-passerines, e.g. the palaeognaths (ostriches, kiwis, etc.), kagu (Rheocomps j ubiquus), hoatzin (Opisthocomus hoazinn), oilbird (Steatornis caripensis) and cuckoo roller (Leptosomus discolor) [30]. Owing to their overall younger age, relatively few passerines display the same pattern, e.g. the four New Zealand wrens (Acanthisittidae), the two lyrebirds (Menuridae) and the two rockjumpers (Charcotopidae). Within Passerida, which contains ca 36% of all birds and 60% of all passerines, the spotted wren-babbler is unique, as it is the only extant species that on its own represents one of the most basal lineages.

Acknowledgements. Normand David, Edward Dickinson, Steven Gregory and Johan Liljeblad are acknowledged for advice on nomenclature; Nigel Collar, Jon Fjeldså, Lars Larsson, Pamela Rasmussen and Craig Robson for various forms of assistance; Guadling Chen for laboratory assistance; the Government of India and Chief Wildlife Warden of Arunachal Pradesh and Jiangxi Wuyi Shan National Nature Reserve for permits.


Funding statement. We thank the John Fell Foundation and the Chinese Academy of Sciences for a Visiting Professorship for Senior International Scientists (no. 2011T2S04) awarded to P.A., the One Hundred Talents project of Sun Yat-sen University (Y.L.) and the National Science Foundation (USA) (T.D.P.).

References

24. Zheng G. 2011 A checklist on the classification and
distribution of the birds of China, 2nd edn. Beijing,
China: Science Press.
25. Huelsenbeck JP, Ronquist F. 2001 MRBAYES: Bayesian
inference of phylogenetic trees. Bioinformatics 17,
26. Stamatakis A. 2006 RAxML-VI-HPC: maximum
likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics
22, 2688–2690. (doi:10.1093/bioinformatics/btl446)
2006 The African warbler genus Hyliota as a lost
lineage in the Oscine songbird tree: molecular
support for an African origin of the Passerida. Mol.
ympev.2005.07.020)
Phylogenetic relationships within Passerida (Aves:
(doi:10.1016/j.ympev.2008.05.029)
29. Barker FK, Barrowclough GF, Groth JG. 2002
A phylogenetic hypothesis for passerine birds:
taxonomic and biogeographic implications of
an analysis of nuclear DNA sequence data.
rspb.2001.1883)
2012 The global diversity of birds in space and
time. Nature 491, 444–448. (doi:10.1038/
nature11631)