Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey

John W. Wilson, Michael G. L. Mills, Rory P. Wilson, Gerrit Peters, Margaret E. J. Mills, John R. Speakman, Sarah M. Durant, Nigel C. Bennett, Nikki J. Marks, Michael Scantlebury


Predator–prey interactions are fundamental in the evolution and structure of ecological communities. Our understanding, however, of the strategies used in pursuit and evasion remains limited. Here, we report on the hunting dynamics of the world's fastest land animal, the cheetah, Acinonyx jubatus. Using miniaturized data loggers, we recorded fine-scale movement, speed and acceleration of free-ranging cheetahs to measure how hunting dynamics relate to chasing different sized prey. Cheetahs attained hunting speeds of up to 18.94 m s−1 and accelerated up to 7.5 m s−2 with greatest angular velocities achieved during the terminal phase of the hunt. The interplay between forward and lateral acceleration during chases showed that the total forces involved in speed changes and turning were approximately constant over time but varied with prey type. Thus, rather than a simple maximum speed chase, cheetahs first accelerate to decrease the distance to their prey, before reducing speed 5–8 s from the end of the hunt, so as to facilitate rapid turns to match prey escape tactics, varying the precise strategy according to prey species. Predator and prey thus pit a fine balance of speed against manoeuvring capability in a race for survival.

  • Received July 8, 2013.
  • Accepted August 8, 2013.
Creative Commons logo

© 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License, which permits unrestricted use, provided the original author and source are credited.

View Full Text