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Animal behaviour

Hawkmoths produce anti-bat ultrasound

Jesse R. Barber1,† and Akito Y. Kawahara2,†

1Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
2Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA

Bats and moths have been engaged in aerial warfare for nearly 65 Myr. This arms

race has produced a suite of counter-adaptations in moths, including bat-detect-

ing ears. One set of defensive strategies involves the active production of sound;

tiger moths’ ultrasonic replies to bat attack have been shown to startle bats, warn

the predators of bad taste and jam their biosonar. Here, we report that hawk-

moths in the Choerocampina produce entirely ultrasonic sounds in response

to tactile stimulation and the playback of biosonar attack sequences. Males do

so by grating modified scraper scales on the outer surface of the genital valves

against the inner margin of the last abdominal tergum. Preliminary data indicate

that females also produce ultrasound to touch and playback of echolocation

attack, but they do so with an entirely different mechanism. The anti-bat function

of these sounds is unknown but might include startling, cross-family acoustic

mimicry, warning of unprofitability or physical defence and/or jamming of

echolocation. Hawkmoths present a novel and tractable system to study both

the function and evolution of anti-bat defences.
1. Introduction
Aerial warfare between echolocating bats and their insect prey has escalated for

nearly 65 Myr [1]. Ultrasonic ‘bat-detecting’ ears have independently evolved a

minimum of 19 times in five insect orders [1]. Most insect ears are connected directly

to neuronal circuits that steer the animals away from bats at low biosonar call inten-

sities and trigger aerobatic evasive behaviours (loops, spirals and dives) at high call

intensities [2]. Tiger moths (Erebidae: Arctiinae) have accelerated this arms race with

an additional set of acoustic strategies. These moths have evolved paired metathor-

acic tymbals to create ultrasonic clicks to answer attacking bats. Empirical work

supports three non-mutually exclusive functions for these acoustic signals.

Sounds can startle naive bats [3], warn of unpalatability [4,5] and jam biosonar [6].

Roeder et al. [7] demonstrated almost a half century ago that choerocampine

hawkmoths (Sphingidae) have bat-detecting ears. Hawkmoths are in a different

superfamily from tiger moths, and the two groups are distantly related [8]. However,

sphingids are also reported to produce sounds in the audible spectrum [9–12],

though the function of sound production in sphingids is unknown. Here, we pro-

vide the first evidence that some hawkmoths produce ultrasound to playback of

echolocation attack. Males of at least three choerocampine species produce entirely

ultrasonic defensive sounds by stridulating modified scales on the genital valves

against the inner margin of the last abdominal tergum. Preliminary evidence from

two of the same hawkmoth species indicates that females also produce ultrasound,

but with an entirely different mechanism. Both males and females produce

ultrasound in response to both tactile stimulation and to playback of bat attacks.
2. Material and methods
(a) Data collection
We sampled hawkmoths with 175 W mercury vapour lights in Malaysia (peninsular

and Borneo) during March 2012 and focused on three choerocampine species, Cechenena
lineosa, Theretra boisduvalii and Theretra nessus. We tethered moths in free flight at the end
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of a 5 mm diameter hollow plastic rod; a monofilament line was tied

between the thorax and abdomen, threaded through the rod and

held securely while the flying moth was queried for acoustic

response to tactile stimulation and playbackof bat attacks. We exam-

ined acoustic responses in several tethering scenarios and elected to

use the above method, as it did not interfere with sound production.

To record moth sounds, we used Avisoft UltraSoundGate 116 Hn

hardware (sampling at 375 kHz onto a laptop computer running

Avisoft Recorder software) and a CM16 condenser microphone

(+3 dB, 20–140 kHz) positioned 10 cm from the posterior end of

the moth’s abdomen (location of the sound-producing structures).

Using the same computer and software, we presented moths with

three echolocation attack sequences played back via an Avisoft

UltraSoundGate Player BL Pro Speaker/Amplifier (+6 dB, 20–

110 kHz, playback sampling rate 250 kHz) placed 10 cm from the

moth’s head (location of ultrasound-sensitive ears): in order of play-

back, Lasiurus borealis, Eptesicus fuscus, and a synthetic bat attack

designed to approximate the echolocation behaviour of several bat

species (see the electronic supplementary material, figure S1, for

details). We obtained recordings of Eptesicus and Lasiurus biosonar

attacks in a flight room as bats attacked mealworms tethered 10 cm

from the same microphone as above. While these bat genera are not

found in Malaysia, the family (Vespertilionidae) is well represented

at our sample sites. The final second of biosonar attacks is similar

across bats [12] and as hawkmoths cannot discriminate frequency

[13,14], the temporal and amplitude dimensions of the attack are

the relevant parameters. On a subsequent expedition (April 2013),

we queried three C. lineosa moths with a ‘Malaysian synthetic

attack sequence’ created from the echolocation attack of Kerivoula
papillosa (characteristics taken from fig. 1 in [15]) to further address

issues of the ecological relevance of our playback stimuli. Each

attack was approximately 700–900 ms in duration and had a peak

equivalent sound pressure level (SPL) of 116+2 dB, as measured

by a B&K 1
4
00 microphone (grid off) at 10 cm (+0.5 dB, 1–

100 kHz). Four seconds of silence separated the playback of each

attack. Voucher specimens are stored in the collection of the

FLMNH, University of Florida; acoustic files are archived at the Cor-

nell Laboratory of Ornithology Macaulay Library (accession no.

ACC3006).
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(b) Analysis
We measured moth signals using Avisoft SASLAB PRO and defined

each cycle of the stridulatory apparatus as a modulation cycle. All

signal parameters were computed from three modulation cycles

per individual. We used responses from tactile trials to characterize

signals to prevent corruption by overlapping bat sounds in the echo-

location playback trials. To determine whether moth sounds were

spectrally or temporally different when produced during tactile or

playback trials, we examined several modulation cycles, and

found no differences. We measured temporal parameters from the

oscillogram and spectral and intensity values from power spectra

(FFT 1024, 50% overlap). We converted relative intensity to peak

equivalent SPL (dB peSPL re. 2 � 1025 mPa) using a reference tone

of a known intensity [16] and adjusted for the frequency response

of the microphone. To calculate duty cycle of the moth sounds, we

counted the number of clicks that occurred in 100 ms, multiplied

this by the average click duration of the modulation cycle (both

measured using the Pulse Train Analysis tool in SASLAB PRO), and

divided this value by 100. We used this approach to allow a direct

comparison with tiger moth acoustic analyses [6,17].
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3. Results and discussion
Three closely related choerocampine species [18] produce

entirely ultrasonic signals when touched and when stimulated

with bat echolocation playback (table 1). This discovery brings
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3
the number of insect groups that respond acoustically to bat bio-

sonar up to three, including tiger moths [19] and tiger beetles

[20]. Male hawkmoths that we studied produce ultrasonic

clicks by stridulating a patch of large, marquise-shaped scales

on the genital valve against the inner margin of the last abdomi-

nal tergum (figure 1; also see the electronic supplementary

material, movie S1). A burst of ultrasound is created as the

valves are moved dorsally and a second burst as they are

moved ventrally. The second burst is often shorter in duration,

perhaps because the scales are oriented dorsally. Data suggest

that females also produce ultrasound to touch and to playback

of echolocation attack, but with an entirely different, still geni-

tally based, sound production mechanism (see the electronic

supplementary material, figure S2, table S1 and movie S2).

That hawkmoths produce sound with modified genital

structures indicates the sounds might be used in mating behav-

iour. A single anecdote describes two male Psilogramma
menephron stridulating while flying near females [21]. An acous-

tic sense mediated by the mouthparts (labral pilifers and labial

palps) has been confirmed in the Choerocampina [7] and via a

related but different mechanism in the Acherontiini [14]. An

intriguing possibility is that the ultrasonic ears in hawkmoths

might have first evolved for mates, not bats.

Hawkmoths responded similarly to playback of all echo-

location attacks, with sound onset occurring approximately

200–400 ms before the end of the biosonar sequence (table 1

and figure 2). Sound intensities of 68–64 dB (peSPL; table 2)

indicate that these signals could operate at greater distances

but, as in tiger moths, anti-bat sound production is used as a

secondary defence deployed late in the attack [17]. The peak

frequency of these moth sounds was 53–57 kHz with a

+15 dB bandwidth ranging from 26–29 kHz up to 86–

105 kHz. This wide bandwidth is audible to sympatric bats

[22] and more broadly to rodents, shrews, cats and primates,

among others [23]. It seems likely that bats are the primary

intended receivers for these ultrasonic sounds. Many bats are

known to prey on hawkmoths [24], and previous work has

shown that choerocampines display evasive behaviour when

stimulated with ultrasound [7].

The specific function of anti-bat ultrasound production in

hawkmoths remains unknown, but it might play a similar

role as in tiger moths—to startle, warn of chemical defense or jam
biosonar. It is unlikely that sphingids are warning bats of bad

taste, as they do not appear to sequester host plant toxins as

adults [25,26]. However, larvae of some species can sequester

defensive chemicals and regurgitate gut contents containing

chemical compounds in the direction of predators [27], and

this might be why some sphingid caterpillars are aposemati-

cally coloured [26]. Hawkmoth adults might benefit through

Batesian mimicry, as has been shown in tiger moths [5]. Sphin-

gids, which include species that can fly up to 5 ms21 [28], could

also be signalling unprofitable characteristics such as flight

speed and difficulty of capture, or their pronounced tibial

spines [29]. Jamming is also a viable function for hawkmoth

sounds. Duty cycle, or sound production per unit time, is theor-

etically and empirically related to jamming efficacy. Two tiger

moth species have been pitted against naive bats to experimen-

tally test jamming and only one, Bertholdia trigona, has been

shown to jam biosonar: the duty cycle of its signal is approxi-

mately 44 per cent [6]. Euchaetes egle did not successfully

avoid naive bats and has a duty cycle of approximately 3 per

cent [4]. The three hawkmoth species that we tested are

intermediate between these two with a duty cycle of
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approximately 20 per cent. Clearly, experiments are needed to

further elucidate the function of hawkmoth ultrasound.

There are anecdotal reports of audible sounds from only a

few genera of hawkmoths, but these genera are widely

distributed across all three subfamilies of the Sphingidae

[9–12,18], arguing that sound production is deeply rooted

within the history of the group. To fully understand the
evolution of hawkmoth anti-bat sounds, many moth species

must be tested for response to bat echolocation attack and

the data correlated with phylogeny.

We thank J. Breinholt, P. Houlihan, A. Keener, I. Kitching, B. Leavell,
C. McClure, P. Padron, J. Yack and W. Conner. Support was provided
by NSF IOS 1121739, 1121807 and the American Philosophical Society.
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