The sound of arousal in music is context-dependent

Daniel T. Blumstein, Gregory A. Bryant, Peter Kaye

Abstract

Humans, and many non-human animals, produce and respond to harsh, unpredictable, nonlinear sounds when alarmed, possibly because these are produced when acoustic production systems (vocal cords and syrinxes) are overblown in stressful, dangerous situations. Humans can simulate nonlinearities in music and soundtracks through the use of technological manipulations. Recent work found that film soundtracks from different genres differentially contain such sounds. We designed two experiments to determine specifically how simulated nonlinearities in soundtracks influence perceptions of arousal and valence. Subjects were presented with emotionally neutral musical exemplars that had neither noise nor abrupt frequency transitions, or versions of these musical exemplars that had noise or abrupt frequency upshifts or downshifts experimentally added. In a second experiment, these acoustic exemplars were paired with benign videos. Judgements of both arousal and valence were altered by the addition of these simulated nonlinearities in the first, music-only, experiment. In the second, multi-modal, experiment, valence (but not arousal) decreased with the addition of noise or frequency downshifts. Thus, the presence of a video image suppressed the ability of simulated nonlinearities to modify arousal. This is the first study examining how nonlinear simulations in music affect emotional judgements. These results demonstrate that the perception of potentially fearful or arousing sounds is influenced by the perceptual context and that the addition of a visual modality can antagonistically suppress the response to an acoustic stimulus.

Footnotes

    • Received April 20, 2012.
    • Accepted May 22, 2012.
    View Full Text